Investigations of the Structure, Topology, and Interactions of the Transmembrane Domain of the Lipid-Sorting Protein p24 Being Highly Selective for Sphingomyelin-C18

Christopher Aisenbrey,† Patricia Kemayo-Koumkoua,† Evgeniy S. Salnikov, Elise Glattard, and Burkhard Bechinger*†

Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France

Supporting Information

ABSTRACT: The p24 proteins play an important role in the secretory pathway where they selectively connect various cargo to other proteins, thereby being involved in the controlled assembly and disassembly of the coat protein complexes and lipid sorting. Recently, a highly selective lipid interaction motif has been identified within the p24 transmembrane domain (TMD) that recognizes the combination of the sphingomyelin headgroup and the exact length of the C18 fatty acyl chain (SM-C18). Here, we present investigations of the structure, dynamics, and sphingomyelin interactions of the p24 transmembrane region using circular dichroism, tryptophan fluorescence, and solid-state nuclear magnetic resonance (NMR) spectroscopies of the polypeptides and the surrounding lipids. Membrane insertion and/or conformation of the TMD is strongly dependent on the membrane lipid composition where the transmembrane helical insertion is strongest in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and SM-C18. By analyzing solid-state NMR angular restraints from a large number of labeled sites, we have found a tilt angle of 19° for the transmembrane helical domain at a peptide-to-lipid ratio of 1 mol %. Only minor changes in the solid-state NMR spectra are observed due to the presence of SM-C18; the only visible alterations are associated with the SM-C18 recognition motif close to the carboxy-terminal part of the hydrophobic transmembrane region in the proximity of the SM headgroup. Finally, the deuterium order parameters of POPC-d11 were nearly unaffected by the presence of SM-C18 or the polypeptide alone but decreased noticeably when the sphingomyelin and the polypeptide were added in combination.

The secretory pathway is essential in the synthesis, transport, and processing of proteins and bioactive molecules and plays a key role in intercellular communication.1 Thereby, it is vitally important and can be linked to a variety of diseases. A well-functioning secretory pathway assures the controlled transport and sorting of proteins and lipids along subcompartments of the endoplasmic reticulum, the Golgi apparatus, and the plasma membrane. During the early secretory pathway, the combination of anteriograde and retrograde transport by vesicles covered by coat protein I and II (COPI- and COPII-coated transport vesicles, respectively) and sorting ensure a controlled and tunable system assuring the correct amount, processing, and destination of proteins and lipids in each compartment.1,2

COPI vesicles ensure the retrograde transport of the early secretory pathway by shuttling from the early Golgi back to the endoplasmic reticulum.1 Interestingly, these vesicles are depleted of cholesterol and sphingolipid (SM) except for one SM species carrying a C18 fatty acyl chain providing evidence for an early segregation and sorting of these lipids.1 The vesicles are made of an outer heptameric coatomer showing similarities to the clathrin coat, the p24 family of proteins that connect to various cargos in a selective manner, and a number of proteins that mediate contact between these layers and are involved in the controlled assembly and disassembly of the complexes.1,12,13,14

The p24 proteins exist in mammals, yeast, and plants and are involved in cellular signaling, hormone secretion, and the occurrence of Alzheimer’s disease.5 They have also been shown to be important during the development of mice embryos.5,6 Lipid cross-linking experiments in cells using a radioactive sphingolipid precursor and immunoprecipitation revealed a strong interaction of the sphingolipid with p24 but not with p23, another member of the family. In follow-up experiments, the transmembrane domains of p23 and p24 were prepared as fusions with maltose binding proteins and reconstituted into model membranes and their interactions with pentaenoylshingomyelins were investigated by FRET.8,9 Distinct FRET was observed for the Trp4 residue of the p24 transmembrane domain with SM-C18:5 but not for p23. Furthermore, the FRET signal was considerably weaker in the presence of sphingomyelins with different chain lengths or for the corresponding phosphatidylcholine (PC-C18:5) indicating a highly specific interaction.
interaction of the p24TMD and SM-C18. An alanine scanning experiment revealed a number of residues that represent a structural motif for lipid selectivity. These are all positioned at the carboxy-terminal end of the TMD and on the same face of the helix. MD simulations indeed show transient interactions of SM-C18 with p24 involving these amino acid residues with a lifetime of the complex in the range of 250 ns.85 Whereas the modulation of protein activity by sphingolipids and their binding to proteins has previously been characterized,10 the selection of a molecular species based on headgroup and fatty acyl chain composition is rather unique. It has been shown that sphingomyelin-C18 modulates the inactive monomer to active oligomer equilibrium of p24, thereby regulating its interactions with cargo and/or other proteins of the COPI complex.10 An allosteric mechanism of regulation has been suggested in which polar residues involved in dimer formation are localized opposite the SM-C18 molecular recognition motif.10 A bioinformatics analysis identified related sphingomyelin recognition motifs of the type [V/I/T/L]XX[V/I/T/L][F/W/Y] in a wide variety of membrane proteins, including the major histocompatibility complex II Qα-chain or GPCRs, in particular within helix 6.11 The bulky β-branched residues and the aromatic residues of the motif form a crevice recognized by SM-C18.

To gain better insight into the lipid interactions of p24 here, we used circular dichroism, fluorescence, and oriented solid-state NMR spectroscopies to investigate the structure, topology, and dynamics of the p24 transmembrane domain in phospholipid bilayers. We also tested for conformational and/or topological changes that may occur due to interactions with SM-C18. Solid-state NMR spectroscopy of uniaxially oriented lipid bilayers is a well-established technique for the investigation of lipid composition of the Golgi membranes.8 Finally, the correspondence positions of the full-length protein are obtained by adding +6 when compared to the numbering of ref 8. The numbering of residues includes the full peptide and thereby adds +6 when compared to the numbering used here.

The peptides were reconstituted in various phospholipid model membranes, including complex mixtures that represent well the lipid composition of the Golgi membranes.8 Finally, the changes in the lipid alignment and fatty acyl chain order parameters due to the presence of p24TMD and/or the SM have been monitored using 131P and 2H solid-state NMR spectroscopy,25−27 thus, a complete picture of the p24−lipid supermolecular arrangement is obtained.

By combining several biophysical approaches and a good number of isotopic labeling schemes, the work presented here reveals important structural details such as the secondary and helix tilt angle, side chain dynamics, and protein−lipid interactions, and only minor changes in the p24TMD structure and dynamics were observed upon addition of SM-C18 to supported phosphatidylcholine bilayers.

MATERIALS AND METHODS

Organic solvents were purchased from Sigma-Aldrich (St. Louis, MO) with a purity of 99%; cholesterol and phospholipids, including N-octadecanoyl-D-erythro-sphingosylphosphorylcho-
were prepared at final concentrations of 10 and 100 mM, respectively, and diluted to different concentrations ranging from 0.1 to 16 mM during peptide titrations.

Circular Dichroism. CD spectra were recorded from 30 μM peptide solutions (and 1 mM lipid were applicable) in 300 μL cuvettes (Hellma Analytics, Mühlheim, Germany) on a Jasco (Tokyo, Japan) J-510 spectropolarimeter using a scan speed of 50 nm/min, a bandwidth of 3 nm, and five scans collected covering the range from 250 to 190 nm using a quartz cell with a 1 mm path length, at 25 °C. The spectra were processed using the spectra manager software of the instrument, and the solvent contributions subtracted. Secondary structures were analyzed with the CDpro Web server using the CONTINLL algorithm.30

Tryptophan Fluorescence. The intrinsic fluorescence of p24TMD due to the presence of a tryptophan was measured using a FluoroLog spectrophotometer (HORIBA, Ltd, Kyoto, Japan) with the polarization filters always at the magic angle. Fluorescence emission spectra were recorded from 295 to 455 nm at an excitation wavelength of 280 nm. The excitation slit width was 1 nm; the emission slit width was 4 nm. The peptide was prepared in 10 mM phosphate buffer (pH 7.2) at a final concentration of 30 μM. A series of emission spectra were recorded at 25 °C while samples were being stirred.

Preparation of Oriented Samples for Solid-State NMR Spectroscopy. Selectively labeled 15N and/or 2H p24TMD was first dissolved in HFIP, and the solvent was removed under a stream of nitrogen. The peptide was then dissolved in a 50/50 (v/v) HFIP/water mixture and added in a stepwise manner to ~150 mg of POPC in HFIP with a final peptide-to-lipid (P/L) molar ratio of 1%. Thereafter, the solvent was gently evaporated under a stream of nitrogen to decrease its total volume to ~0.5 mL. To avoid peptide aggregation, small volumes of HFIP were added; thus, the water content remained low during the process.28 The resulting clear and viscous sample that was deposited onto ~20 ultrathin glass plates (6 mm × 11 mm or 8 mm × 22 mm, thickness 00, i.e., ~80 μm, Paul Marienfeld, Lauda-Könighofen, Germany) slowly dried in air, and the residual solvent evaporated under high vacuum. After the sample had equilibrated at 93% humidity for 2–3 days at room temperature, the glass plates were stacked on top of each other. The stack was stabilized by Teflon tape, and the sample sealed in plastic wrapping to avoid dehydration.

Preparation of Non-Oriented Samples. Non-oriented samples were prepared by dissolving 3 mg of deuterated POPC (POPC-d41) and 0.14 mg of p24TMD (1 mol%; pH adjusted to 7) and/or 0.15 mg of SM-C18 (5 mol %) in HFIP. The solvent was evaporated under a stream of nitrogen and high vacuum overnight; thus, a film forms on the walls of the small glass tube (6 mm outer diameter). The sample was then resuspended in 15 μL of 10 mM phosphate buffer (pH 7.1) by vortexing and sonication in a water bath followed by five freeze/thaw cycles. In some cases, stable vesicles were obtained only after a drying and redissolution step. For NMR spectral acquisition, the glass tube with the sample was directly inserted into the solenoidal coil of a static solid-state NMR probe.

Solid-State NMR Experiments. Solid-state NMR spectra were recorded on a Bruker Avance NMR spectrometer operating at 9.4 T (some spectra were acquired at 7.05 T). The oriented samples were inserted into commercial E-free flat coil NMR probes (Bruker, Rheinstetten, Germany) with the normal parallel to the magnetic field.31 All spectra were recorded at 25 K.

Proton-decoupled 15N solid-state NMR spectra were recorded at 40.54 MHz on a Bruker Avance NMR 400 MHz spectrometer with an Hahn-echo sequence (CP) pulse sequence. The CP contact time was 800 μs, the repetition time 3 s, the 1H B1 field 31 kHz, and the spectral width 38 kHz, and the acquisition times ranged from 6 to 20 ms. The spectra were calibrated relative to external ammonium chloride (15NH4Cl) at 16 ppm. An exponential apodization function with a line broadening of 200 Hz was applied prior to Fourier transformation.

Proton-decoupled 31P solid-state NMR spectra were recorded at 161.937 MHz on a Bruker Avance 400 MHz NMR spectrometer using a Hahn-echo pulse sequence,33 an echo time of 40 μs, a repetition time of 3 s, a 31P B1 field of 60–80 kHz, and a spectral width of 40–120 kHz. The spectra were referenced relative to 85% phosphoric acid (H3PO4) at 0 ppm. An exponential line broadening (LB) of 150 Hz was applied prior to Fourier transformation.

Deuterium solid-state NMR spectra of the 2H3-alanine-labeled peptide reconstituted in lipid bilayers were recorded at 61.4 MHz on a Bruker Avance 400 MHz NMR spectrometer using a quadrupole-echo sequence.34 A dwell time of 1 μs was chosen to allow a precise adjustment of the echo by left-shifting the FID after the acquisition (corresponding to a spectral window of 500 kHz); a B1 field of 30–50 kHz, an acquisition time of 8 ms, interpulse delays of 30–50 μs, and a recycling time of 1.5 s were used. For processing, the FID was left-shifted to the top of the echo. An exponential multiplication corresponding to a LB of 500 Hz was applied before Fourier transformation. All 2H solid-state NMR spectra were referenced relative to external 2H2O at 0 ppm.

For 2H solid-state NMR spectra of deuterated lipids, a repetition delay of 0.3 s, an echo time of 100 μs, a dwell time of 0.5 μs, and a B1 field of 40 kHz were used. The processing included an exponential apodization with a line broadening of 100 Hz. The temperature was set to 37 °C.

Calculation of Angular Restraints from Experimental Solid-State NMR Spectra. To determine the peptide orientations that agree with the experimental spectra, a coordinate system was defined. Within the α-helix, the tilt is defined as the angle between the long axis of the helix and the membrane normal, and the pitch angle as that between the membrane normal and the line within an arbitrary plane of the peptide helical wheel projection. Protein Data Bank (PDB) coordinates of an ideal α-helix were generated in MOLMOL.32 The coordinates of the labeled 15N atom, the corresponding amide proton, and the C atom of the previous residue were extracted and used to calculate the 15N chemical shift tensor in the same reference frame using the main 15N chemical shift tensors reported previously (55.8, 81.4, and 228.6 ppm).35 By successively rotating the peptide molecule around the pitch and the tilt angle, we systematically screened the three-dimensional orientational space in 30° steps using a program written in MATHEMATICA 3.0 (Wolfram Research, Champaign, IL).36,37 Contour plots mark the angular pairs that agree with the experimental results. The simulation of the 2H solid-state NMR spectra was performed on the same principles by extracting the coordinates of the Cα and Cβ atoms in the oriented PDB files. The contour plots of several 15N- and 2H-labeled sites were superimposed in a single plot.

Calculation of the Lipid Order Parameters. To investigate the lipid fatty acyl chain packing and dynamics in the presence of p24, the TMD was reconstituted into liposomes...
where the palmitoyl chain of POPC lipids is deuterated throughout. Therefore, the deuterium solid-state NMR spectra from such samples represent several overlapping quadrupolar splittings, each providing information about the order parameter of the deuterated CD₂ and CD₃ sites (see Figure 8). The deuterium order parameters (S₂CD) of each CD₂ and CD₃ group are extracted according to the equation S₂CD = 4kₜQ/ℏ(1−Ω/Ω₀), where ℏ is the static quadrupole coupling constant (167 kHz) for a C−D bond.38

RESULTS

Preparation of the Synthetic Peptides. To perform structural investigations of the p24 transmembrane domain, a peptide encompassing the hydrophobic membrane anchor and the SM-C18 recognition motif was prepared by solid phase peptide synthesis. Eight additional amino acids of the native human p24 sequence were included as well as two lysines at the amino terminus added to make the peptide more water-soluble (see the sequence shown in Table 1). The yield after purification

Table 1. ¹⁵N Chemical Shift Measurements of the p24TMD Reconstituted into Oriented Phospholipid Bilayers of either POPC or the 95/5 POPC/SM Mixture at a Lipid-to-Peptide Ratio of 100⁺

<table>
<thead>
<tr>
<th></th>
<th>¹⁵N chemical shift in POPC (ppm)</th>
<th>¹⁵N chemical shift in 95/5 POPC/SM (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L23</td>
<td>218 ± 4</td>
<td>221 ± 3</td>
</tr>
<tr>
<td>A20</td>
<td>224 ± 4</td>
<td>224 ± 4</td>
</tr>
<tr>
<td>V19</td>
<td>217 ± 4</td>
<td>218 ± 7</td>
</tr>
<tr>
<td>L18</td>
<td>206 ± 9</td>
<td>205 ± 8</td>
</tr>
<tr>
<td>L16</td>
<td>216 ± 5</td>
<td>216 ± 4</td>
</tr>
</tbody>
</table>

The sequence is indicated with the recognition motif in red, the labeled sites in bold, and the TMD underlined. The indicated range of chemical shifts and quadrupolar splittings represents the line width at 80% maximal intensity and was used for the restriction analysis. The chemical shift maxima can be defined with higher precision (cf. Figure 4A).

Three sets of the deuterated CD₂ and CD₃ sites (see Figure 8) were extracted according to the equation S₂CD = 4kₜQ/ℏ(1−Ω/Ω₀), where ℏ is the static quadrupole coupling constant (167 kHz) for a C−D bond.38

The CD and fluorescence spectra of p24TMD in POPC or DMPC (Figure 1E,F) are indicative of a helical peptide in a hydrophobic environment similar to the spectra obtained at intermediate DPC concentrations (Figure 1A,B). A Θ₂₂₂/Θ₂₀₉ ratio of >1 is suggestive of significant oligomerization of the peptide in membranes,43 whereas the Trp of p24TMD in the saturated DMPC exhibits a somewhat more polar environment.

When 5 mol % SM is included in the POPC bilayers, the helical features and the hydrophobic environment of p24TMD are much increased (Figure 1E,F) and the spectra resemble those of the highest DPC concentrations investigated (Figure 1A,B). In contrast, when samples are reconstituted into POPC membranes, the CD spectra are featureless and the fluorescence spectra are indicative of a rather polar environment with a low quantum yield and an intensity maximum at 302 nm (Figure 1E,F). Interestingly, when a POPC membrane encompassing 10 mol % POPE and 5 mol % SM is investigated, the PE offsets the effects of the SM. As a consequence, the CD and fluorescence spectra are intermediate with respect to those obtained in the presence of DMPC or POPC (Figure 1E,F).

When ¹⁵N-labeled peptides are reconstituted in uniaxially oriented samples and investigated with the membrane normal parallel to the magnetic field of the NMR spectrometer, the ¹⁵N chemical shifts provide a direct indicator of the approximate tilt angle.44 Whereas transmembrane helical domains exhibit ¹⁵N chemical shifts around 200 ppm, helices that align parallel to the bilayer surface are characterized by chemical shifts of <100 ppm. An accurate determination of the tilt and rotational pitch angles of a polypeptide domain is obtained by combining information from the ²H quadrupolar splitting of ²H₁-labeled alanines and the ¹⁵N chemical shift of labeled peptide bonds using doubly labeled peptides prepared by chemical peptide synthesis.41,42

Because POPC showed the best results when membrane insertion and structural formation of the p24TMD were tested under a variety of conditions and in optical analysis (Figure 1E,F), this lipid was used as a reference to extensively investigate
the domain by solid-state NMR spectroscopy. As discussed above, POPC forms stable lipid bilayers and provides a suitable model system for eukaryotic membranes. Several p24TMD peptides were prepared carrying 15N- and 2H$_3$-alanine isotopic labels at specific sites (Table 1), reconstituted into oriented POPC membranes at a peptide-to-lipid ratio of 1/100, and

Figure 1. CD and fluorescence spectra of p24TMD in membrane environments. (A, C, and E) CD and (B, D, and F) tryptophan fluorescence spectra of 30 μM p24TMD in 10 mM phosphate buffer (pH 7) in the presence of increasing concentrations of DPC (A and B) or SDS (C and D) or in the presence of small unilamellar vesicles made from the phospholipids indicated at a peptide-to-lipid ratio of 3 mol % (E and F). (G) The fluorescence intensity at 331 nm (black traces) and the molar ellipticity at 222 nm (blue traces) are shown as a function of DPC (filled circles) and SDS (open circles) concentrations (data from panels A–D). (H) Analysis of the secondary structure composition from the spectra shown in panel E using CDPro. The data were recorded at 25 °C except for the spectra in the presence of DMPC (35 °C).
investigated by 15N solid-state NMR spectroscopy (Figure 2A–E). Here, we focused on the carboxy-terminal end of the TMD because Val19, Thr22, Leu23, Ile26, and Tyr27 have been found to be important for the interaction of the TMD with the SM-C18 lipid. The 15N chemical shifts of a number of labeled residues, including sites that are part of the recognition motif or close by, have been determined in successive experiments and are listed in Table 1. The spectra exhibit well-oriented line shapes with chemical shifts between 205 ± 2 and 224 ± 4 ppm, a range that is associated with transmembrane helical alignments (Figure 2A–E). The corresponding 31P NMR spectra show major intensities around 30 ppm indicative of liquid crystalline PC aligned with the normal parallel to B_0. Additional intensities extending to ~15 ppm are from lipids that exhibit different headgroup conformations and/or are oriented at other angles, including contributions from the non-oriented sample (representative spectra are shown in Figure 3D–F). In view of the good alignment of the polypeptides as judged from the 15N solid-state NMR spectra, the 31P intensity distribution probably reflects an inherent property arising from the TMD–lipid interactions (Figures 2 and 3).

To test for the effect of the sphingolipid, 5 mol % SM was added to the phosphatidylcholine membranes. Closely related 15N spectral line shapes and chemical shifts were observed (Figure 2F–I and Table 1). Only the L23 position exhibits a visible chemical shift difference. To further investigate the effect of SM-C18, its content was increased to 10 mol % and the 15N-Leu18 TMD investigated. Indeed, a small increase in the chemical shift maximum by ~5 ppm and a line broadening effect were observed for the 10% SM sample (Figure 3A–C). The broader line shape indicates a more heterogeneous population of the p24 peptide in these membranes. Interestingly, despite the weak tendency of the 15N label to shift to higher values and/or to cause somewhat broader lines, the 31P chemical shift anisotropies of the SM18-containing samples remain constant or even tend to decrease (Figure 3D–F).

The peptide carrying a 15N-labeled L23 was also reconstituted into an oriented lipid bilayer of a composition that more closely mimics that of the membrane of the Golgi apparatus. The spectrum closely matches that obtained in the presence of a 95/5 POPC/SM mixture (Figure 4A). To compare more closely the effects of SM-C18, Figure 4 shows expansions of the 15N solid-state NMR spectra obtained for the L23, A20, and L16 sites in the presence of POPC or a 95/5 POPC/SM mixture. Whereas the spectra of A20 and L16 superimpose in the absence or presence of SM-C18 (Figure 4B,C), the L23 site shows a small difference in the chemical shift maximum when 5 or 8 mol % SM is present (Figure 4A).

Because Val19, Thr22, Leu23, Ile26, and Tyr27 have been found to be important for the interaction of the TMD with the SM-C18 lipid, 15N chemical shifts of a number of labeled residues, including sites that are part of the recognition motif or close by, have been determined in successive experiments and are listed in Table 1. The spectra exhibit well-oriented line shapes with chemical shifts between 205 ± 2 and 224 ± 4 ppm, a range that is associated with transmembrane helical alignments (Figure 2A–E). The corresponding 31P NMR spectra show major intensities around 30 ppm indicative of liquid crystalline PC aligned with the normal parallel to B_0. Additional intensities extending to ~15 ppm are from lipids that exhibit different headgroup conformations and/or are oriented at other angles, including contributions from the non-oriented sample (representative spectra are shown in Figure 3D–F). In view of the good alignment of the polypeptides as judged from the 15N solid-state NMR spectra, the 31P intensity distribution probably reflects an inherent property arising from the TMD–lipid interactions (Figures 2 and 3).

To test for the effect of the sphingolipid, 5 mol % SM was added to the phosphatidylcholine membranes. Closely related 15N spectral line shapes and chemical shifts were observed (Figure 2F–I and Table 1). Only the L23 position exhibits a visible chemical shift difference. To further investigate the effect of SM-C18, its content was increased to 10 mol % and the 15N-Leu18 TMD investigated. Indeed, a small increase in the chemical shift maximum by ~5 ppm and a line broadening effect were observed for the 10% SM sample (Figure 3A–C). The broader line shape indicates a more heterogeneous population of the p24 peptide in these membranes. Interestingly, despite the weak tendency of the 15N label to shift to higher values and/or to cause somewhat broader lines, the 31P chemical shift anisotropies of the SM18-containing samples remain constant or even tend to decrease (Figure 3D–F).

The peptide carrying a 15N-labeled L23 was also reconstituted into an oriented lipid bilayer of a composition that more closely mimics that of the membrane of the Golgi apparatus. The spectrum closely matches that obtained in the presence of a 95/5 POPC/SM mixture (Figure 4A). To compare more closely the effects of SM-C18, Figure 4 shows expansions of the 15N solid-state NMR spectra obtained for the L23, A20, and L16 sites in the presence of POPC or a 95/5 POPC/SM mixture. Whereas the spectra of A20 and L16 superimpose in the absence or presence of SM-C18 (Figure 4B,C), the L23 site shows a small difference in the chemical shift maximum when 5 or 8 mol % SM is present (Figure 4A).

2H Quadrupolar Splitting of Alanines. Whereas the 15N solid-state spectra shown in Figures 2–4 provide a direct indicator of the transmembrane orientation of the p24TMD helix, more accurate topologies are obtained when samples are analyzed in combination with 2H solid-state NMR spectra of alanines that carry deuterons at their methyl group and are located within the same domain. The resulting quadrupolar splitting reports on the alignment of the C_{α}–C_{β} bond relative to...
the magnetic field direction as well as the mosaic spread of this angle.16 When the p24TMD labeled with $^2\text{H}_3$ at the alanine 15 position was reconstituted into POPC or 95/5 POPC/SM oriented membranes, the ^2H solid-state spectra exhibit within experimental error closely related quadrupolar splittings of ± 1.4 kHz (Figure 5A,B). These values represent a $C_{\alpha} - C_{\beta}$ bond alignment relative to the magnetic field direction (membrane normal) of $\pm 45^\circ$.46 The phase transition temperature of pure SM-C18 is 45 °C,46 and that of POPC $\sim 2^\circ$C,47,48 where mixtures of phospholipids often show a broad transition in the intermediate range.49,50

When the sample is investigated at -20°C, a spectrum representing a large range of $C_{\alpha} - C_{\beta}$ alignments is obtained (Figure 5C). A predominant transmembrane alignment with little additional intensity between 40 and 100 ppm is observed in the corresponding ^{15}N solid-state NMR spectrum of ^{15}N-Ala15 in POPC.51 Thus, the peptide remains globally aligned also at low temperature, a fact that is even more evident at -20°C.52,53

The ^2H solid-state spectra of $^2\text{H}_3$-alanine 20 after reconstitution into oriented membranes made from POPC, 95/5 POPC/SM, and 90/10 POPC/SM bilayers are shown in panels D–F of Figure 5, respectively. The alanine side chain exhibits an intensity distribution of quadrupolar splittings, however, the overall intensity is relatively low. Therefore, it is difficult to analyze these spectra in further detail, and the simulations in Figure 5D–F are shown to illustrate how even small changes in angles affect the spectral line shapes. In the presence of 5 mol % SM, a single quadrupolar splitting of ~ 20 kHz (Figure 5E) appears to be suggestive of a more homogeneous alignment under these conditions, although overall the intensity distribution is quite similar to the spectra in the absence or presence of 10% SM-C18 (Figure 5D,F).54

\textbf{Restriction Analysis.} The orientational restraints were used to calculate the topology of an ideal helix encompassing the residues listed in Table 1. Whereas one NMR parameter can be used to provide semi-quantitative information about the alignment of the domain, they all have to agree with a single tilt and pitch angular pair of a polyopeptide domain. To analyze the data in a quantitative manner, all possible alignments of the p24 helix are tested by rotating the TMD in a stepwise manner around the helix axis as well as a perpendicular director. For each alignment thus obtained, the ^{15}N chemical shifts and the ^2H quadrupolar splitting are calculated and compared with the experimental values, including their dispersion that has been extracted from the line width at 80% maximal intensity (Table 1). When agreement is obtained with a measurement, the angular pair is labeled on the restriction plot shown in Figure 6A.55 The black trace represents the ^2H quadrupolar splitting of Ala15 and the colored traces represent the ^{15}N chemical shifts of Leu16 (blue), Leu18 (red), Val19 (green), Ala20 (pink), and Leu23 (turquoise) when reconstituted into uniaxially oriented 95/5 POPC/SM membranes (Table 1). The circle highlights the tilt and pitch angular pair where most measurements coincide. Only the ^{15}N chemical shift of alanine 20 misses this intersection by a few degrees. The corresponding tilt and pitch angles of 19° and 235°, respectively, are represented by the helical structure shown in Figure 6B. Figure 6A also reveals the highly complementary nature of ^{15}N and ^2H solid-state NMR measurements.56,57

To further explore the structure and dynamics of the p24TMD side chains, a peptide deuterated at the Leu23 side chain was prepared and investigated. The Leu23 residue is part of the SM-C18 recognition motif (Table 1). The labeled leucine side chain encompasses 10 deuterons, two CD$_3$ groups, two CD groups at the α- and γ-positions, and a CD$_2$ at the β-position. Whereas the three deuterons of the methyl group of alanine result in a single quadrupolar splitting that reflects the alignment of the C$_{\alpha} - C_{\gamma}$ bond and thus the backbone topology, the situation for most of the leucine deuterons, in particular the six deuterons of the CD$_3$ groups, is different because of the additional degrees of freedom that arise from combined rotations around the C$_{\alpha} - C_{\gamma}$ and C$_{\beta} - C_{\gamma}$ bonds.51,52 Therefore, at room temperature, relatively narrow spectral lines are obtained (Figure 7A,B). Slowing these motions at low temperatures results in a much broader intensity distribution ranging over 37 kHz with a different line shape (Figure 7C,D). Under those conditions, the presence of 5 mol % SM results in an $\sim 10\%$ increase in the maximal quadrupolar splitting.53

\textbf{Investigation of p24TMD in a Golgi-like Membrane.} As the sorting of SM-C18 in the COPI vesicles involves p24TMD when localized in the Golgi cellular compartment,30 the polypeptide was also investigated in POPC/POPE/POPS/cholesterol/SM bilayers at a 52/19/5/16/8 molar ratio, thereby more closely mimicking the lipid composition of the Golgi.
Figure 5. 2H solid-state NMR spectra of p24TMD labeled with 3H$_3$-alanine at the (A–C) A15 or (D–F) A20 site and reconstituted into (A and D) oriented POPC, (B, C, and E) 95/5 POPC/SM-C18, or (F) 90/10 POPC/SM-C18 bilayers at peptide-to-lipid ratios of 1 mol %. The sample was uniaxially oriented with the normal parallel to B_0. The measurements were performed at ambient temperature (A, B, and D–F) or at −20 °C (C). The central peaks are from residual HDO. The interpulse delay in the solid-echo sequence was 50 μs (A–C). The spectra were acquired with 11K (C and D) to 27K (F) scans. The red lines in panels A, B, and D–F show simulated spectra assuming an average alignment relative to the membrane normal (B_0 field) with a Gaussian distribution of the C$_{\alpha}$–C$_{\beta}$ bond. The corresponding angles (in the range of 43.5−47°) and distribution (SDs around 8°) are shown to the right of the spectra. Panel C compares the experimental spectrum to a powder pattern line shape.

Figure 6. (A) Restriction analysis for the p24TMD topology based on the solid-state NMR measurements shown in panels F–I and K of Figure 2 and Table 1. The orientational restraints from the 3H$_3$-Ala20-labeled site (black) as well as from the 15N measurements of Leu16 (blue), Leu18 (red), Val19 (green) Ala20 (pink), and Leu23 (turquoise) are shown. The circle highlights the topologies around the tilt and pitch angular pair (19° and 235°, respectively) common to all but one orientational restraint. (B) Structural model of p24TMD in a lipid bilayer representing the topology from the restriction analysis of solid-state NMR measurements.
environment of the valine 19 side chains in the hydrophobic environment and does not change much by freezing the sample to −20 °C (not shown). When 8 mol % SM-C18 of this complex mixture is replaced with POPC, the width of the intensity distribution decreases by 10% at 40 °C (Figure 7E) but remains largely unaffected at lower temperatures (not shown).

Investigation of the POPC-d31 Order Parameters in the Presence of SM and p24TMD. To investigate the lipid fatty acyl chain packing and dynamics in the presence of SM-C18 and/or p24TMD, liposomes were prepared with POPC lipids deuterated throughout their palmitoyl chain. The deuterium solid-state NMR spectra from such samples encompass several overlapping characteristic quadrupolar splittings, each providing information about the order parameter of the deuterated CD2 and CD3 sites (Figure 8A). The deuteron order parameters \(S_{CD}\) of each C−D bond are extracted directly from these spectra in a position-dependent manner (Figure 8B).

The \(^2\)H solid-state NMR spectra of POPC-d31 and 95/5 POPC-d31/SM lipid vesicles in the absence of peptides are shown in Figure 8A. The largest quadrupolar splitting that is assigned to the relatively rigid CD2 groups closest to the glycerol backbone decreases from 25.2 to 24.9 kHz in the presence of 5 mol % SM, while the smallest quadrupolar splitting assigned to the methyl group at the end of the acyl chains within the bilayer core stays unchanged at 2.3 kHz. Thereby, the palmitoyl \(S_{CD}\) relative profiles exhibit an only minor effect due to the presence of 5 mol % SM-C18.

When 1 mol % p24TMD was added to POPC-d31 membranes, only small disturbances of the \(^2\)H quadrupolar splittings are comparable with the effect of SM-C18 at 5 mol % are observed (Figure 8A). The largest and smallest quadrupolar splitting are 24.8 and 2.4 kHz, respectively, which correspond to relative order parameters of 0.98 and 1.03, respectively, when considering the ratio with the corresponding order parameters of pure POPC-d31 (Figure 8B). In contrast, the addition of p24TMD to 95/5 POPC-d31/SM membranes at 1 mol % has a pronounced influence on the \(^2\)H quadrupolar splittings. The outermost quadrupolar splitting decreases to 24.6 kHz, and that of the methyl to 2.16 kHz (Figure 8A). The order parameter profile decreases by 7% when the palmitoyl CD2 segments are buried inside the bilayer are considered (Figure 8B).
DISCUSSION

The members of the p24 family of proteins play important roles in the early secretory pathway, i.e., the controlled transport and processing of proteins and lipids within and between the endoplasmic reticulum and the Golgi apparatus. They have been proposed to function as cargo receptors, to provide additional control mechanisms for transport within these intracellular compartments, and to be important regulators of transport. Within the p24 transmembrane domain, an amino acid motif that is responsible for very specific interactions with SM carrying a C18 fatty acyl chain has been identified. To the best of our knowledge, this is the only example in which a highly selective protein–lipid interaction has been characterized involving both the headgroup and the fatty acyl chain of lipids. The amino acid motif that assures such preferential interactions with SM-C18 over sphingomyelins carrying shorter or longer fatty acyl chains has been identified to be VXXTLXXY (cf. Table 1). Here we present the first biophysical and structural investigations of p24TMD in phospholipid bilayers and of its lipid interactions.

CD and fluorescence spectroscopic investigations show that after reconstitution into phospholipid bilayers, p24TMD adopts a highly helical conformation and its Trp4 is localized in a hydrophobic environment (Figure 1). Whereas the spectroscopic changes correlate with the CMC of detergent micelles (Figure 1A–D,G), the behavior of p24TMD in lipid bilayers is considerably more complex (Figure 1E,F). The helical contributions and the fluorescence intensities are quite pronounced upon reconstitution in POPC bilayers, and this lipid has served as a reference for further comparison. In the presence of DMPC, the helical content was slightly different, although the fluorescence intensity of tryptophan, being at the fourth position of the transmembrane domain, is much decreased. Possibly, due to the location of this residue close to the amino-terminal end of the hydrophobic TMD, the somewhat thinner DMPC membranes expose more of this amino acid to the aqueous environment. A much more pronounced difference is observed when the bilayers were made of POPE carrying a smaller headgroup. Both CD and fluorescence spectroscopy show a different mode of interaction, the peptide possibly tending to oligomerize into larger structures in this environment. Interestingly, the addition of 5 mol % SM considerably increases both the CD helical content of the p24TMD and its fluorescence intensity. The presence of 10% POPE and the presence of 5% SM-C18 largely compensate for each other; thus, the optical parameters are again close to those of pure PC membranes (Figure 1E,F). Thus, the dependence of CD and fluorescence spectra on the lipid headgroup, the membrane thickness, and/or the presence of SM possibly reflects the structural properties of the SM-C18 recognition motif of p24TMD. It is noteworthy that the SM headgroup resembles that of PC whereas both SM-C18 and the oleoyl fatty acyl chains of POPE extend over 18 C atoms. Via comparison of the different lipids, both the headgroup and the fatty acyl chain turn out to be important for the p24 transmembrane insertion (Figure 1E,F).

As a next step, the helix topology was determined using solid-state NMR of p24TMD reconstituted into membranes oriented with their long axes parallel to the magnetic field direction of the NMR spectrometer. Whereas under these conditions a set of 1H chemical shifts around 210 ppm (Figures 2–4) are an indicator of transmembrane helix alignments, the highly complementary information obtained from methyl-deuterated alanes (Figure 5) provides detailed information about the helical tilt and pitch angles. Thus, a tilt angle of 19° was determined for p24TMD (Figure 6). The same analysis provides a pitch angle of 235°, but the numerical value is dependent on how the corresponding coordinate system is initially defined within the p24 helix. Therefore, Figure 6B also shows the positioning of the labeled amino acids relative to the membrane normal. It should be noted that the 15N chemical shift of alanine 20 misses the common intersection point by a few degrees. However, here an ideal helical conformation encompassing residues 16–23 was assumed. In previous investigations, small adjustments in the helical conformation and/or the introduction of wobbling and rocking motions have been taken into account to reach coincidence. Indeed, the 1H solid-state NMR spectra recorded from the methyl groups of alanine 20 and alanine 15 (Figure 5) indicate an angular distribution of these Cα–Cγ bonds and thus in the topology and conformation of the sites. With regard to the accuracy of the tilt and pitch angles determined in this manner, we refer to previous investigations in which these angles shifted by a few degrees when motions were taken into consideration or slightly different helical conformations.

Notably, when the spectra in the absence and presence of SM-C18 are compared to each other (Table 1 and Figures 2–5), there is only little variation in the 15N chemical shifts or 2H-13C correlations. The alanine deuterium quadrupolar splittings, indicating that the backbone topology and conformation of p24TMD seem hardly affected by the presence of the sphingomyelin (Figures 2–5 and Table 1). Of the six labeled amino acid residues, two are part of the SM-C18 recognition motif (V19 and L23) whereas others are close by or on the backside of the helix (A15, L16, L18, and A20). The latter have been suggested to be involved in the dimerization of the TMDs. In the presence of 5 or 8 mol % SM-C18, the L23 amide shows some small 15N chemical shift changes (Figure 4A), which represent differences in the angle between the corresponding amide 15N vector and the B0 field membrane normal of ~20°. Notably, L23 is at the very C-terminal end of the hydrophobic domain, whereas all other residues are more deeply inserted in the low-dielectric part of the lipid bilayer, which is expected to enhance the stability of the H-bonding network. Furthermore, small changes in the dynamics of the Leu23 and Val19 side chains are observed, which were somewhat more restricted in the presence of SM.

The leucine 23–d18 spectra are dominated by the six deuterons associated with the two methyl groups not only because of their large number but also because the interpulse delays reduce the signal intensities of the less mobile deuterons of the Cα and Cγ positions. Indeed, similar 1H NMR line shapes have been observed when the TM segment of phospholamban was investigated. In this prior work, methyl group rotation about the Cα–Cγ bond and at 0° additional librational motions about the Cα–Cβ and Cγ–Cδ bonds were used to simulate such line shapes. At ~25°C, the quadrupolar splittings of the three leucines in phospholamban were 30–36 kHz, while at room temperature, additional 2-fold jumps between predominant leucine rotamers, fast side chain reorientation, or off axis motions result in further averaging. Although the spectra observed for p24TMD were obtained from macroscopically oriented samples, the degrees of freedom around the Cα–Cγ and Cβ–Cγ bonds result in an angular distribution of methyl groups approaching that of a powder. Similar to the observations with...
the phospholambdan leucines, the 2H NMR spectra of p24TMD leucine 23-d$_{10}$ are suggestive of methyl group rotation and some librational motions, which are more restricted in the presence of SM-C18.

Also, in the case of deuterated valine, comparison with earlier work is of interest. Rotation around the 2H quadrupolar splittings of ≈ 35 kHz for both valine-d$_4$ model compounds or of purple membranes containing d$_4$-valines over a similar range of temperatures. The broad spectral line shapes in these early publications were simulated by fast rotational averaging about the $C_\beta-C_\gamma$ bond. Additional fast averaging about the $C_\gamma-C_\delta$ bond results in quadrupolar splittings of 14 kHz. The width of the 2H spectra suggests that similar motional regimes are present in p24TMD where the presence of SM-C18 has an only minor effect on the spectral line shapes (Figure 7E,F).

Considering that SM-C18−p24TMD interactions have been shown to be highly specific, are associated with a shift in monomer−dimer equilibria of p24 proteins, and are important on a functional level, one may have expected a more pronounced change in the structural features of p24TMD upon addition of SM-C18. Previously, it was shown that 1 mol % brominated SM-C18 quenches the tryptophan fluorescence of p24-TMD and 0.2 mol % nonbrominated quencher is sufficient to re-establish 50% of the fluorescence (Figure 9 of ref 8), suggesting that there is an excess of SM-C18 in the 5% samples. Of all backbone and side chain spectra investigated here, only the most carboxy-terminal residue L23 exhibited some noticeable changes in both its 13N and 2H solid-state NMR spectra. First, of the labeled sites, only V19 and L23 are part of the motif that has been identified experimentally and simulated to be in contact with the sphingolipid. Whereas L23 may undergo conformational changes due to the proximity of the SM headgroup, V19 is positioned deeper in the membrane where the fatty acyl chains of PC and SM dominate the environment.

Second, previous studies have measured a p24 concentration within the cell membranes in the range of 2 ng/nmol lipid concomitant with changes in the monomer−dimer equilibrium when different organelles are compared to each other. This corresponds to a polypeptide-to-lipid ratio of $\approx 1/10000$, which is 100-fold lower when compared to the experimental conditions of our NMR samples. It is thus likely that the p24TMD in the NMR samples is already in its dimeric state even in the absence of SM-C18. Thus, whereas in the cell SM-C18−p24 interactions result in changes in conformation and oligomerization concomitant with an allosteric regulation of activity, the comparatively high P/L ratio in our experiments could promote the dimeric state even in the absence of SM-C18. Indeed, when investigated by SDS−PAGE, the peptides showed a tendency to form oligomers in the absence and presence of POPC or 95/5 POPC/SM bilayers at peptide-to-lipid ratios of 1/100 (Figure S3). Helical tilt angles in a related range have also been observed for dimers formed by the TMD of glycosphingolipid or the amyloid precursor protein. Unfortunately, it is difficult to further reduce the polypeptide content of the NMR samples because the NMR spectra shown typically required a day or more to acquire. Third, the possibility that the lipid properties may change upon addition of SM-C18, which by itself has a gel-to-liquid crystalline phase transition (45 °C) above room temperature that was used in the experiments presented here and much higher than that of POPC (−2 °C), must be considered. At low SM concentrations, the POPC/SM mixtures have been shown to remain in a liquid crystalline phase at ambient temperature. When spectra have been recorded at low temperatures, considerably broadened liquid crystalline−gel phase transitions have to be considered where the phase transition temperature often represents a weighted average. The phase behavior of the complex Golgi lipid mixture investigated here has to the best of our knowledge not yet been investigated. The modest changes in the side chain heterogeneity of A15 and A20 as well as the decrease in the side chain (and backbone) dynamics of V19, A20, and L23 could reflect a small decrease in membrane fluidity upon addition of SM-C18, point to direct molecular interactions, or both. Therefore, it is of interest to also take into consideration the changes in the lipid properties that have been investigated by measuring the 3P and 1H solid-state NMR spectra of the phospholipids. The lipid order parameter provides information about the alignment and dynamics of the deuterated segments and has been used previously to study polypeptide−lipid interactions.

After deconvolution of the 2H solid-state NMR spectra, the order parameter for each segment is obtained with the highest order parameters being associated with the C$_\gamma$ groups close to the glycerol backbone of the phospholipid. The order parameter of the palmitoyl fatty acyl chain of POPC is hardly affected by the presence of either 1% p24TMD or 5% SM (Figure 8) in accordance with an only slight increase in the POPC-d$_{31}$ order parameter in the presence of 50 mol % SM-C16. However, when the peptide is added to a POPC/SM bilayer, a noticeable decrease in order parameter is observed, similar to the behavior of polypeptides that insert into the membrane interface. Similar observations have been made with TM sequences of the MHC class II receptor. These observations are suggestive that the somewhat tilted p24TMD shingomyelin interacts with SM-C18 in such a manner to exert positive curvature strain in the POPC membrane.

CONCLUSIONS

In the work presented here, the transmembrane domain of p24 was investigated by CD, fluorescence, and solid-state NMR spectroscopies. The degree of membrane insertion is heavily dependent on the exact phospholipid composition where in agreement with prior investigations both the sphingomyelin headgroup and a fatty acyl chain length of 18 C atoms were found to be important (Figure 1E,F). In POPC or in mixed POPC/SM-C18 bilayers, the polypeptide adopts a helical structure (Figure 1E) that is oriented at a tilt angle of $\approx 19^\circ$ (Figure 6). Whereas the oriented 13N chemical shift and 1H solid-state NMR spectra of most residues remain unaffected, small alterations are observed for the L23 and V18 sites (Figures 2−5 and 7), suggesting that only minor changes in conformation, topology, and dynamics occur due to the presence of 5 or 10 mol % SM-C18. It is likely that under conditions of this investigation (peptide-to-lipid ratio of 1% in POPC) the peptide occurs predominantly as a dimer. When the deuterium order parameters of POPC-d$_{31}$ were investigated, the presence of SM-C18 or the polypeptide alone had little influence, but a considerable disordering effect was observed when they were added in combination.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.biochem.9b00375.

Protein Structure in Alkyl Phosphocholine Detergents: A Critical

