0D/2D Heterostructures Vertical Single Electron Transistor
Pas de texte intégral | |
---|---|
Auteurs |
Louis Donald Mouafo Notemgnou Florian Godel Laurent Simon Yannick J. Dappe Walid Baaziz Ulrich Noumbe Étienne Lorchat Marie‐Blandine Martin Stephane Berciaud Bernard Doudin Ioan-ovidiu Ersen Bruno Dlubak Pierre Seneor Jean-françois Dayen |
Unité de recherche du site |
Institut de Physique et Chimie des Matériaux de Strasbourg - IPCMS - UMR7504 Institut de Science des Matériaux de Mulhouse - IS2M - UMR7361 Institut de chimie et procédés pour l'énergie l'environnement et la santé - ICPEES - UMR7515 |
Langue |
en |
Date de première publication |
2020-12-04 |
ISSN |
1616-301X |
Titre de la source (revue, livre…) |
Advanced Functional Materials |
Résumé |
Mixed-dimensional heterostructures formed by the stacking of 2D materials with nanostructures of distinct dimensionality constitute a new class of nanomaterials that offers multifunctionality that goes beyond those of single dimensional systems. An Show moreMixed-dimensional heterostructures formed by the stacking of 2D materials with nanostructures of distinct dimensionality constitute a new class of nanomaterials that offers multifunctionality that goes beyond those of single dimensional systems. An unexplored architecture of single electron transistor (SET) is developed that employs heterostructures made of nanoclusters (0D) grown on a 2D molybdenum disulfide (MoS2) channel. Combining the large Coulomb energy of the nanoclusters with the electronic capabilities of the 2D layer, the concept of 0D–2D vertical SET is unveiled. The MoS2 underneath serves both as a charge tunable channel interconnecting the electrode, and as bottom electrode for each v-SET cell. In addition, its atomic thickness makes it thinner than the Debye screening length, providing electric field transparency functionality that allows for an efficient electric back gate control of the nanoclusters charge state. The Coulomb diamond pattern characteristics of SET are reported, with specific doping dependent nonlinear features arising from the 0D/2D geometry that are elucidated by theoretical modeling. These results hold promise for multifunctional single electron device taking advantage of the versatility of the 2D materials library, with as example envisioned spintronics applications while coupling quantum dots to magnetic 2D material, or to ferroelectric layers for neuromorphic devices. Show less |
DOI | 10.1002/adfm.202008255 |
Éditeur |
Wiley |
URL éditeur |
https://onlinelibrary.wiley.com/doi/10.1002/adfm.202008255 |
Titre abrégé de la source |
Adv. Funct. Mater. |
Type de publication |
article |
Type de publication |
ACL |
Projet(s) de recherche ANR |
ANR-19-CE09-0028 |
Projet(s) de recherche européen(s) |
H2020 Future and Emerging Technologies Graphene Flagship (Grants Core2 No. 785219 and Core3 No. 881603) |
Topic |
Physique [physics]/Matière Condensée [cond-mat] |
Mots-clés |
transition metal dichalcogenides |
Unité de recherche extérieure au site |
Unité Mixte de Physique CNRS Thales Université Paris‐Saclay Palaiseau 91767 France |
Fonction |
aut |
Identifiant ORCID |
0000000317412741 257533671 206574780 0000000156968991 |
Identifiant idREF |
237633418 191000329 094769583 166738697 188743472 11310250X 149238614 077410513 153493259 153493399 191000442 |
URI du jeu de données lié |
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2F... |
Audience |
Non spécifiée |
Envoyer vers HAL |
5 |
URL | https://univoak.eu/islandora/object/islandora:107636 |