Algebraic structure of stochastic expansions and efficient simulation
Pas de texte intégral | |
---|---|
Auteurs |
Kurusch Ebrahimi-Fard Alexander Lundervold SimonMalham Hans Munthe-Kaas Anke Wiese |
Unité de recherche du site |
Laboratoire Mathématiques, Informatique et Applications - LMIA - EA3993 |
Langue |
en |
Volume |
468 |
Numéro |
2144 |
Page de début |
2361 |
Page de fin |
2382 |
Date de première publication |
2012 |
Date de parution |
2012 |
ISSN |
1364-5021 |
Titre de la source (revue, livre…) |
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences |
Résumé |
We investigate the algebraic structure underlying the stochastic Taylor solution expansion for stochastic differential systems. Our motivation is to construct efficient integrators. These are approximations that generate strong numerical integration Show moreWe investigate the algebraic structure underlying the stochastic Taylor solution expansion for stochastic differential systems. Our motivation is to construct efficient integrators. These are approximations that generate strong numerical integration schemes that are more accurate than the corresponding stochastic Taylor approximation, independent of the governing vector fields and to all orders. The sinhlog integrator introduced by Malham & Wiese (2009) is one example. Herein, we show that the natural context to study stochastic integrators and their properties is the convolution shuffle algebra of endomorphisms; establish a new whole class of efficient integrators; and then prove that, within this class, the sinhlog integrator generates the optimal efficient stochastic integrator at all orders. Show less |
DOI | 10.1098/rspa.2012.0024 |
Éditeur |
Royal Society, The |
Type de publication |
journal article |
Type de publication |
ACL |
Topic |
Mathématiques [math]/Mathématiques générales [math.GM] |
Mots-clés |
efficient simulation |
Fonction |
aut |
Audience |
International |
URL | https://univoak.eu/islandora/object/islandora:32725 |