Algebraic computations on the set of real intervals
Pas de texte intégral | |
---|---|
Auteurs |
Michel Goze Nicolas Goze Elisabeth Remm |
Unité de recherche du site |
Laboratoire Mathématiques, Informatique et Applications - LMIA - EA3993 |
Langue |
en |
Volume |
57 |
Numéro |
4 |
Page de début |
393 |
Page de fin |
402 |
Date de première publication |
2014 |
Date de parution |
2014 |
ISSN |
1220-3874 |
Titre de la source (revue, livre…) |
Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie |
Résumé |
The set of closed intervals of R is provided with a semigroup structure. We complete this semigroup to obtain a 2-dimensional vector space. But neither associative nor nonassociative algebra structure satisfying a natural property on the product of Show moreThe set of closed intervals of R is provided with a semigroup structure. We complete this semigroup to obtain a 2-dimensional vector space. But neither associative nor nonassociative algebra structure satisfying a natural property on the product of intervals can be defined on this vector space. We define an embedding of this vector space into a 4-dimensional associative algebra and we compute all the arithmetic operations on intervals in this algebra. As applications, we study polynomial functions and the problem of diagonalization of matrices whose elements are intervals. Show less |
URL éditeur |
http://ssmr.ro/bulletin/volumes/57-4/node6.html |
Type de publication |
journal article |
Type de publication |
ACL |
Topic |
Mathématiques [math]/Mathématiques générales [math.GM] |
Mots-clés |
real intervals |
Fonction |
aut |
Identifiant idREF |
061420522 061420026 |
Audience |
International |
URL | https://univoak.eu/islandora/object/islandora:32807 |