As many antipodes as vertices on convex polyhedra
Pas de texte intégral | |
---|---|
Auteurs |
Joel Rouyer Tewfik Sari |
Unité de recherche du site |
Laboratoire Mathématiques, Informatique et Applications - LMIA - EA3993 |
Langue |
en |
Volume |
12 |
Numéro |
1 |
Page de début |
43 |
Page de fin |
61 |
Date de première publication |
2012-03-31 |
Date de parution |
2012 |
ISSN |
1615-715X |
Titre de la source (revue, livre…) |
Advances in Geometry |
Résumé |
An earlier result states that, on the surface of a convex polyhedron with n vertices endowed with its intrinsic metric, a point cannot have more than n antipodes (farthest points). In this paper we produce examples of polyhedra with n vertices, on Show moreAn earlier result states that, on the surface of a convex polyhedron with n vertices endowed with its intrinsic metric, a point cannot have more than n antipodes (farthest points). In this paper we produce examples of polyhedra with n vertices, on which some suitable point admits exactly 71 antipodes. We also proved that, for any positive number d <= 1, there exist (in the closure of the set of these polyhedra) some convex surfaces on which some point has a set of antipodes of Hausdorff dimension d. Show less |
DOI | 10.1515/advgeom.2011.030 |
Éditeur |
De Gruyter |
URL éditeur |
http://www.degruyter.com/view/j/advg.2012.12.issue-1/advgeom.2011.030/advgeom.2011.030.xml?format=INT |
Type de publication |
journal article |
Type de publication |
ACL |
Topic |
Mathématiques [math]/Mathématiques générales [math.GM] |
Mots-clés |
convex polyhedra |
Fonction |
aut |
Identifiant idREF |
095778101 |
Audience |
International |
URL | https://univoak.eu/islandora/object/islandora:32850 |