Engineering Chemically Active Defects in Monolayer MoS2 Transistors via Ion-Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols

Accès libre Peer reviewed | |
---|---|
Version acceptée pour publication (post-print auteur) | |
Paternité - Pas d'utilisation commerciale [CC] [BY] [NC] | |
Auteurs |
Simone Bertolazzi Sara Bonacchi Guangjun Nan Anton Pershin David Beljonne Paolo Samori |
Unité de recherche du site |
Institut de Science et d'Ingénierie Supramoléculaires - ISIS - UMR7006 Laboratory for Chemistry of Novel Materials; Université de Mons; Place du Parc 20 7000 Mons Belgium |
Langue |
en |
Volume |
29 |
Numéro |
18 |
Page de début |
1606760 |
Date de première publication |
2017-03-01 |
ISSN |
09359648 |
Titre de la source (revue, livre…) |
Advanced Materials |
Résumé |
Irradiation of 2D sheets of transition metal dichalcogenides with ion beams has emerged as an effective approach to engineer chemically active defects in 2D materials. In this context, argon-ion bombardment has been utilized to introduce sulfur Show moreIrradiation of 2D sheets of transition metal dichalcogenides with ion beams has emerged as an effective approach to engineer chemically active defects in 2D materials. In this context, argon-ion bombardment has been utilized to introduce sulfur vacancies in monolayer molybdenum disulfide (MoS2). However, a detailed understanding of the effects of generated defects on the functional properties of 2D MoS2 is still lacking. In this work, the correlation between critical electronic device parameters and the density of sulfur vacancies is systematically investigated through the fabrication and characterization of back-gated monolayer MoS2 field-effect transistors (FETs) exposed to a variable fluence of low-energy argon ions. The electrical properties of pristine and ion-irradiated FETs can be largely improved/recovered by exposing the devices to vapors of short linear thiolated molecules. Such a solvent-free chemical treatment—carried out strictly under inert atmosphere—rules out secondary healing effects induced by oxygen or oxygen-containing molecules. The results provide a guideline to design monolayer MoS2 optoelectronic devices with a controlled density of sulfur vacancies, which can be further exploited to introduce ad hoc molecular functionalities by means of thiol chemistry approaches. Show less |
DOI | 10.1002/adma.201606760 |
Éditeur |
Wiley-VCH Verlag |
URL éditeur |
http://onlinelibrary.wiley.com/doi/10.1002/adma.201606760/abstract |
Titre abrégé de la source |
Adv. Mater. |
Type de publication |
ACL |
Projet(s) de recherche ANR |
Agence Nationale de la Recherche. Grant Number: ANR-10-LABX-0026_CSC |
Projet(s) de recherche européen(s) |
European Commission. Grant Number: GA-696656 Marie-Curie IEF MULTI2DSWITCH. Grant Number: GA-700802 |
Domaine |
Chimie/Matériaux |
Fonction |
aut |
Identifiant ORCID |
orcid.org/0000-0001-6256-8281 |
Identifiant idREF |
109288335 |
Audience |
International |
URL | https://univoak.eu/islandora/object/islandora:62665 |