Metadata of the chapter that will be visualized online

<table>
<thead>
<tr>
<th>Chapter Title</th>
<th>Solid-State NMR Approaches to Study Protein Structure and Protein–Lipid Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copyright Year</td>
<td>2019</td>
</tr>
<tr>
<td>Copyright Holder</td>
<td>Springer Science+Business Media, LLC, part of Springer Nature</td>
</tr>
<tr>
<td>Author</td>
<td>Family Name</td>
</tr>
<tr>
<td></td>
<td>Particle</td>
</tr>
<tr>
<td></td>
<td>Given Name</td>
</tr>
<tr>
<td></td>
<td>Suffix</td>
</tr>
<tr>
<td></td>
<td>Division</td>
</tr>
<tr>
<td></td>
<td>Organization</td>
</tr>
<tr>
<td></td>
<td>Address</td>
</tr>
<tr>
<td>Author</td>
<td>Family Name</td>
</tr>
<tr>
<td></td>
<td>Particle</td>
</tr>
<tr>
<td></td>
<td>Given Name</td>
</tr>
<tr>
<td></td>
<td>Suffix</td>
</tr>
<tr>
<td></td>
<td>Division</td>
</tr>
<tr>
<td></td>
<td>Organization</td>
</tr>
<tr>
<td></td>
<td>Address</td>
</tr>
<tr>
<td></td>
<td>Division</td>
</tr>
<tr>
<td></td>
<td>Organization</td>
</tr>
<tr>
<td></td>
<td>Address</td>
</tr>
<tr>
<td>Author</td>
<td>Family Name</td>
</tr>
<tr>
<td></td>
<td>Particle</td>
</tr>
<tr>
<td></td>
<td>Given Name</td>
</tr>
<tr>
<td></td>
<td>Suffix</td>
</tr>
<tr>
<td></td>
<td>Division</td>
</tr>
<tr>
<td></td>
<td>Organization</td>
</tr>
<tr>
<td></td>
<td>Address</td>
</tr>
<tr>
<td></td>
<td>Division</td>
</tr>
<tr>
<td></td>
<td>Organization</td>
</tr>
<tr>
<td></td>
<td>Address</td>
</tr>
<tr>
<td>Author</td>
<td>Family Name</td>
</tr>
<tr>
<td></td>
<td>Particle</td>
</tr>
<tr>
<td></td>
<td>Given Name</td>
</tr>
<tr>
<td></td>
<td>Suffix</td>
</tr>
<tr>
<td></td>
<td>Division</td>
</tr>
</tbody>
</table>
Abstract

Solid-state NMR spectroscopy has been developed for the investigation of membrane-associated polypeptides and remains one of the few techniques to reveal high-resolution structural information in liquid-disordered phospholipid bilayers. In particular, oriented samples have been used to investigate the structure, dynamics and topology of membrane polypeptides. Much of the previous solid-state NMR work has been developed and performed on peptides but the technique is constantly expanding towards larger membrane proteins. Here, a number of protocols are presented describing among other the reconstitution of membrane proteins into oriented membranes, monitoring membrane alignment by 31P solid-state NMR spectroscopy, investigations of the protein by one- and two-dimensional 15N solid-state NMR and measurements of the lipid order parameters using 2H solid-state NMR spectroscopy. Using such methods solid-state NMR spectroscopy has revealed a detailed picture of the ensemble of both lipids and proteins and their mutual interdependence in the bilayer environment.

Keywords

<table>
<thead>
<tr>
<th>Membrane reconstitution</th>
<th>Oriented bilayer</th>
<th>Bicelle</th>
<th>Helix topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Membrane protein structure</td>
<td>Detergent</td>
<td>Surface alignment</td>
<td>Transmembrane orientation</td>
</tr>
<tr>
<td>Protein insertion</td>
<td>Channel</td>
<td>PISEMA</td>
<td>Separated local field spectroscopy</td>
</tr>
<tr>
<td>Cross-polarization</td>
<td>Lee–Goldburg decoupling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Corresponding Author

<table>
<thead>
<tr>
<th>Family Name</th>
<th>Bechinger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given Name</td>
<td>Burkhard</td>
</tr>
</tbody>
</table>

Address

Université de Strasbourg, UMR 7177

Address: Strasbourg, France

Division: International Center for Frontier Research in Chemistry

Organization: Institut Universitaire de France

Address: Strasbourg, France

Division

Institut de Chimie, CNRS

Organization

Université de Strasbourg, UMR 7177

Address: Strasbourg, France

Division: International Center for Frontier Research in Chemistry

Organization: Institut Universitaire de France

Address: Strasbourg, France

Email

bechinge@unistra.fr
Chapter 23

Solid-State NMR Approaches to Study Protein Structure and Protein–Lipid Interactions

Christopher Aisenbrey, Evgeniy S. Salnikov, Jesus Raya, Matthias Michalek, and Burkhard Bechinger

Abstract

Solid-state NMR spectroscopy has been developed for the investigation of membrane-associated polypeptides and remains one of the few techniques to reveal high-resolution structural information in liquid-disordered phospholipid bilayers. In particular, oriented samples have been used to investigate the structure, dynamics and topology of membrane polypeptides. Much of the previous solid-state NMR work has been developed and performed on peptides but the technique is constantly expanding towards larger membrane proteins. Here, a number of protocols are presented describing among other the reconstitution of membrane proteins into oriented membranes, monitoring membrane alignment by 31P solid-state NMR spectroscopy, investigations of the protein by one- and two-dimensional 15N solid-state NMR and measurements of the lipid order parameters using 2H solid-state NMR spectroscopy. Using such methods solid-state NMR spectroscopy has revealed a detailed picture of the ensemble of both lipids and proteins and their mutual interdependence in the bilayer environment.

Key words Membrane reconstitution, Oriented bilayer, Bicelle, Helix topology, Membrane protein structure, Detergent, Surface alignment, Transmembrane orientation, Protein insertion, Channel, PISEMA, Separated local field spectroscopy, Cross-polarization, Lee–Goldburg decoupling

1 Introduction

Membrane proteins constitute about 30% of the expressed reading frames [1, 2], are extremely important in cellular function and of major importance in biomedical and pharmaceutical research. However, their structural investigation lags much behind that of soluble proteins due to problems of obtaining the quantitative amounts of proteins needed for structural investigations and their limited stability in the absence of lipid bilayers. In addition, among those systems that can be made available many are too large for a detailed solution NMR spectroscopic analysis and/or they are difficult to crystallize in their native conformation, a requirement for high-resolution X-ray diffraction techniques. For example,
G-protein coupled receptors (GPCR) are of major importance in pharmaceutical and medical research and the last few years have shown good progress in their structural analysis [3]. Nevertheless, revealing their functionally important dynamics in membrane environments remains a major challenge [4]. Notably, for our understanding of their functional states it is essential that membrane proteins are reconstituted and investigated in liquid crystalline bilayers [5].

Solid-state NMR spectroscopy provides an interesting alternative route for protein structure determination also within large complexes including membrane polypeptides [6–12]. Whereas in solution fast diffusion and motional averaging assure that the NMR spectra exhibit narrow lines and high resolution, the anisotropy of NMR interactions remains apparent in the spectra taken from solids or from molecules or complexes whose size prevents efficient isotropic averaging. Therefore in static solid or semi-solid samples the chemical shift, dipolar interactions and quadrupolar splittings are all dependent on the molecular alignment relative to the magnetic field direction, and the anisotropy of nuclear interactions is a predominant feature of the NMR spectra also of membrane-bound proteins [13]. Whereas under magic angle spinning conditions the spectral appearance is related to the isotropic chemical shift spectra observed in solution, here we present the analysis of oriented samples, which contain valuable structural information as the chemical shifts (e.g., 15N, 13C, 1H), quadrupolar (e.g., 2H, 14N) and dipolar couplings (e.g., 15N-13C, 1H-15N) all depend on the alignment of bonds and molecules relative to the magnetic field direction. This approach requires that polypeptides are reconstituted into macroscopically oriented membranes, and the resulting samples inserted in the magnetic field of the NMR spectrometer, in the simplest case with the bilayer-normal parallel to the magnetic field direction.

Clearly the reconstitution of the proteins into phospholipid bilayers is a critical step before the analysis by NMR spectroscopic methods can take place. Therefore, Subheading 3.1 provides a detailed step-by-step protocol for the membrane reconstitution of proteins that are soluble in aqueous buffer but also capable to insert into the membrane. A number of alternative pathways is described including the use of detergents thus that the approach can be extended to other membrane proteins. In particular, Notes 2, 6 and 10 (Subheading 4), respectively, give indications how to proceed with other lipid bilayers and buffers, or which detergents are commonly used to extract and solubilize membrane proteins.

From such samples, solid-state NMR spectra are obtained that provide orientation-dependent information by revealing 15N and 31P chemical shifts as well as 15N-1H dipolar couplings (Subheadings 3.2.1–3.2.3). This chapter therefore complements previous protocols where the investigation of synthetic peptides by 15N
and 2H solid-state NMR spectroscopy was described [14]. In Subheading 3.2.2 the procedure to record oriented 15N chemical shift solid-state NMR spectra is presented in detail. These spectra allow one to simply “read out” the membrane alignment of α-helical peptides that have been labeled with 15N at one of the amide bonds [15, 16]. At membrane alignments where the normal is parallel to the magnetic field direction transmembrane α-helical peptides exhibit 15N resonances in the 200 ppm range whereas they resonate at <100 ppm when oriented parallel to the membrane surface [15]. In a related manner, the dipolar coupling is $K \times (3\cos^2\Theta - 1)$, where Θ is the angle between the N-H vector and the magnetic field direction (parallel to the bilayer normal if oriented correspondingly) and for the amide nitrogen K is typically \sim10 kHz [15]. As the N-H vectors are close to collinear with the helix long axis values around 20 kHz (ignoring the negative sign, which cannot be determined easily) indicate transmembrane alignments, whereas the splitting is zero at the magic angle and close to 10 kHz for in planar alignments. Therefore, this parameter provides related information to 15N chemical shift measurements from the same helix [17]. When both values are correlated from a large number of residues of the same helix the resulting pattern is indicative of the tilt and pitch angles as well as reveals kinks or other irregular features. Other parameters that can be used for structural analysis are 13C chemical shift or the 2H quadrupolar splittings of methyl-deuterated alanines [6, 17, 18] and the corresponding protocols can be found in a previous publication of this series [14].

Solid-state NMR spectroscopy is also used to monitor the macroscopic phase properties of phospholipids, membrane thinning and the formation of pore structures involving the phospholipids. First, 31P solid-state NMR spectra have been used to monitor the macroscopic phase properties of phospholipid membranes as bilayers, hexagonal, cubic and isotropic phases exhibit distinct spectral line shapes [19]. Second, oriented 31P and 2H solid-state NMR spectra have been analyzed for membrane thinning and toroidal pore assemblies [20, 21] and the sample preparation and NMR measurements are presented in Subheadings 3.1 and 3.2.1, respectively.

Third, 2H solid-state NMR spectroscopy of deuterium-labeled lipids allows one to monitor the order parameter of the fatty acyl chains in a segment-dependent manner and thereby also the membrane thickness, the protein penetration depth, and the resulting membrane disruptive properties of polypeptides [22, 23]. By mixing deuterated lipids with non-deuterated ones it is also possible to monitor interactions of the protein with specific membrane components using the same procedures [24]. The protocols necessary for such investigations are provided in Subheading 3.2.4. Lastly, a similar approach can be used on head-group deuterated lipids to monitor electrostatic interactions at the membrane interface [25, 26].
A major advantage of solid-state NMR spectroscopy is its capacity to work with bilayers in their native liquid disordered state. However, the technique is also relatively insensitive when compared to other types of spectroscopy. Therefore, it is worthwhile to consider the sensitivity of the measurements described here and the requirements for isotopic labeling. On the one hand, the 31P nucleus is present in every phospholipid at 100% natural abundance and compared to many other heteronuclei exhibits a relatively high sensitivity. Therefore, one of the most straightforward measurements discussed here is the analysis of the alignment and macroscopic phase properties of the membranes by 31P solid-state NMR and many of these measurements can be performed in time scales of minutes (e.g., [20, 27, 28]). On the other hand, recording the 15N (or 2H) solid-state NMR spectra of polypeptides reconstituted into membranes is more difficult as the proteins are diluted in the membrane and in water. In addition, in oriented membranes much of the space within the coil volume is either occupied by glass plates or the conditions for the formation of oriented bicelles require a high content of aqueous buffer [29]. Furthermore, the spins typically observed (15N, 2H) are relatively insensitive when compared to 1H or 31P. Therefore, quantitative amounts of uniformly or selectively labeled proteins have to be prepared usually by a combination of molecular genetics, bacterial overexpression, and biochemical methods [30–32]. A typical sample encompasses milligram amounts of proteins, labeled with 15N in 100–200 mg of lipid and even though signal enhancement techniques such as cross-polarization are used the measurements can take several hours (one-dimensional experiments) to days (two-dimensional experiments). In this context it is noteworthy that dynamic nuclear polarization (DNP)/solid-state NMR equipment has been developed to boost the sensitivity of NMR spectroscopy by orders of magnitude thereby reducing the acquisition times of spectra from days to minutes [33–35], a method that is under continuous development especially when investigations of membrane proteins are of concern [11, 36, 37].

2 Materials

2.1 Materials Needed for the Preparation of Samples of Membrane Proteins Reconstituted into Oriented Lipid Bilayers

1. Disposable glass tubes with conical ends \geq10 mL (e.g., $-15 \text{ mm } \times 100 \text{ mm}$), glass pipettes with long tip for organic solvents and standard glass pipettes for aqueous solutions, 250 μL Hamilton syringe, glass petri dishes with lid (diameter about 10 cm), watchmaker forceps one with pointed and one with flat tips (Outils Dumont SA, Montignez—Switzerland), Teflon tape, plastic foil that goes with an impulse sealer also used in kitchens (e.g., TEW Electrical Heating Equipment, Taipei, Taiwan).
2. Sterile filtered water. Solvents and reagents of analytical grade: buffers, salts, sodium azide. To dissolve lipids dichloromethane or chloroform, methanol or other organic solvents (see Note 1).

3. Buffer stock solution used to dissolve the protein (e.g., 200 mM Tris, pH 7.4).

4. Protein sample in buffer.

5. Sodium azide (NaN₃) solution (0.02% w/v) for the resuspension of the protein–lipid pellet after ultracentrifugation.

6. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and depending on the desired lipid composition other phospholipids (Avanti Polar Lipids, Birmingham, AL), cholesterol (Sigma-Aldrich) (see Note 2). In order to perform the ²H solid-state NMR experiments described in Subheading 3.2.4 a number of different phospholipids deuterated at various head group and/or fatty acyl chain positions are commercially available (e.g., Avanti Polar Lipids, Birmingham, AL).

7. Lipid extruder (e.g., Avanti® Mini-Extruder, Avanti lipids, Alabaster, AL, USA), with polycarbonate filters (100 or 200 nm) and/or tip sonicator (e.g., Sonoplus, Bandelin electronic GmbH & Co. KG, Berlin, Germany).

8. Centrifuge (MiniSpin®, Eppendorf, AG, Hamburg, Germany) for the removal of metal particles after sonication.

9. Dialysis chamber with pore size (MWCO) of 3.5–10 kDa and a sample volume of 3–12 or 0.5–3 mL (e.g., Slide-A-Lyzer Dialysis Cassette, Thermo Scientific, Rockford, IL) and syringes (e.g., 5 mL syringe, Terumo, Leuven, Belgium) equipped with an injection needle (0.8 × 4 mm Sterican, Braun, Melsungen, Germany or 0.4 × 2 mm Neolus, Terumo, Leuven, Belgium) to insert the sample into the chamber in order to desalt the protein–lipid suspension.

10. Bio-Beads SM-2 (Bio-Rad Laboratories, Richmond, CA) for the effective detergent removal from the protein sample after reconstitution.

11. Centrifugal concentrator tubes (e.g., Macrosep® Centrifugal Devices, Pall, Port Washington, NY), MWCO (molecular weight cutoff) typically 3 kDa (big enough for easy diffusion of buffer (and detergent), small enough to retain the protein).

12. To equilibrate the atmosphere at 93% r.h. a saturated solution of KNO₃ (for analysis min 99% Merck Darmstadt) is used in a closed chamber (see Note 3).

13. Nitrogen gas (bottled or prepared by evaporation of liquid nitrogen) with sensitive pressure gauge, connected to a silicon tube which finishes with a Pasteur pipette.
Ultrathin glass plates that fit your NMR coil (thickness 0.0 from Marienfeld, Lauda-Königshofen, Germany). Before preparing the sample test if a stack of glass plates sealed and wrapped in plastic film fits the coil (cf. Subheading “Application of Lipid Bilayers onto Solid Supports for Alignment”). Custom-made glass plates of dimensions 11 × 20, 9 × 20, 8.5 × 20, 8 × 12 or 6 × 10 mm have been used. If you have the choice 9 × 20 is about half the prize when compared to 8.5 × 20. However, the width of the glass plates should match the coil dimensions, leaving some space for wrapping. The length of the glass plates should not exceed the length of the coil or of the proton cage in case of an e-free probe (see Note 4).

Alternatively, supports made of polymers such as high-density polyethylene (Goodfellow, Cambridge UK) and of sapphire plates have been used for DNP/solid-state NMR measurements where glass plates interfere with these measurements [36]. These have the additional advantage of being thinner thereby allowing more membrane material to enter the coil, to have better heat conductivities and by being flexible to be also suitable for magic angle oriented sample spinning [38].

14. High vacuum with cold trap to remove traces of organic solvent (e.g., lyophilizer).

15. Ultracentrifuge to fractionize lipid bound protein from unbound protein staying in solution (e.g., Optima L-100 XP, Beckman Coulter, Palo Alto, CA).

2.2 Materials Needed for NMR Spectroscopy

1. Access to a solid-state NMR spectrometer (at least two channels except for 2H) with the corresponding probes: that is, for the experiments described here static 31P{1H}, 15N{1H}, and/or 2H. For better sensitivity during the investigation of peptides in membranes flat-coil NMR probes have been developed [39–41] and are commercially available from several manufacturers (e.g., Bruker, Rheinstetten, Germany; Doty Scientific, Columbia, SC). Preferably NMR probe heads that avoid strong electric fields at the interior of the coil are used as they assure less heat intake and thereby improved sample stability (see Note 4). For the investigation of lipids by 31P{1H} or 2H solid-state NMR or for highly concentrated polypeptide samples by 15N{1H} (or 13C{1H}) solid-state NMR, where smaller overall quantities of sample are required (e.g., a 31P NMR signal can already be obtained from 5 mg phospholipids oriented between a pair of glass plates) conventional solenoidal coil shapes have also been used.
2. Solid-state NMR references: 15N-ammoniumchloride or 15N-

ammoniumsulfate for 15N1H experiments, 85% H_3PO_4 for 31P1H experiments and water enriched with 2H$_2$O for 2H NMR.

3. For DNP/solid-state NMR measurements additional hardware is required [36, 42]. Furthermore, biradicals such as TOTA-

POL or AMUPOL need to be added to the sample [37] (see

Note 5).

3 Methods

3.1 Reconstitution of Proteins into Oriented Lipid Bilayers

An oriented solid-state NMR sample is typically composed of a few milligram of protein in about 50–200 mg of lipid oriented between glass plates, the exact amounts depending on finding a compromise between a good “dilution” of the protein in the membrane and consequently good bilayer alignment, good signal intensity which is correlated to the sensitivity (magnetic field strength) of the NMR spectrometer and the maximum sample size which is related to the volume of the NMR coil (typically in the range 10 \times 8 \times 3 mm, cf. [36]). Also, to keep the protein functional or to test the effects of the membrane composition it may be desired that samples of variable lipid composition are prepared. Therefore, it is notably that a large variety of bilayers with different composition have been oriented mechanically between glass slides [23, 43]. As long as liquid disordered bilayers form uniaxial alignment has been possible.

In the following a preparation scheme for different lipid mixtures is therefore provided. Whereas during the reconstitution procedure peptides can often be mixed with lipids in organic solvents [14, 44] this should in general be avoided for proteins. Therefore, the protocols presented here consists in preparing phospholipid vesicles (Subheading “Preparation of Lipid Vesicles”), followed by membrane reconstitution of the protein (Subheading “Membrane Reconstitution of the Protein”), removal of detergent/buffer exchange (Subheading “Removal of Detergent” or “Reducing the Volume of the Protein–Lipid Sample After Dialysis”) and orienting the resulting vesicles along the surface of small cover glasses/polyethylene film (Subheading 3.1.2). Alternatively, bicelles that orient in the magnetic field of the NMR spectrometer are prepared (Subheading “Formation of Oriented Lipid Bicelles that Orient in the Magnetic Field”). The full protocol is summarized in the flow chart shown in Fig. 1.
Fig. 1 Flow chart for the reconstitution of proteins into oriented lipid bilayers. For DNP/solid-state NMR experiments the addition of biradicals needs to be considered at some step during the preparations (see Note 5)
3.1.1 Reconstitution of Proteins into Lipid Vesicles

Preparation of Lipid Vesicles

1. Prepare a homogenous mixture of the lipids organic solvents (at ~50 mg/mL) in glass tubes of approximate dimensions ~15 mm × 100 mm. Depending on the lipid composition chloroform, dichloromethane, or mixtures of one of the two solvents with methanol 2:1 v/v have been used (see Note 1).

2. The organic solution is gently evaporated in a hood using a stream of nitrogen in such a manner to create a film of the lipid on the inner surface of the test tube. Pasteur pipettes attached to a soft silicone tube can be used for this purpose and can be easily replaced by fresh ones to avoid cross-contamination of samples. Before exposing the solution to the stream of nitrogen carefully adjust the gas flow as turbulences may cause spray dispersion and the loss of sample. Warming the test tube in a small beaker of warm water helps in the steady evaporation of the solvent. If dichloromethane is used warming by the hand is sufficient.

3. Remove the remaining traces of organic solvents by high vacuum during a few hours or best overnight. This can be achieved, for example, in a lyophilizer.

4. Hydrate the lipid film with of the buffer also used to dissolve the protein to obtain a lipid concentration ≤10 mM (7–8 mg/mL) (see Note 6) and close the tube with Parafilm. Leave for about an hour or longer followed by vortexing. The addition of 3–4 glass beads of about 2 mm in diameter helps in transferring the film into a suspension of multilamellar vesicles.

5. To homogenize the samples, submit to ≥3 freeze (using dry ice in isopropanol) or a −20 °C freeze–thaw (using lukewarm water)–vortex cycles (see Note 7).

Preparation of Unilamellar Vesicles by Extrusion

Unilamellar vesicles of a defined outer diameter in the range 100–1000 nm can be produced by extrusion through a polycarbonate film that has a specific pore size. The extrusion device for a few milliliter amounts of solution typically consists of two syringes and a holder supporting the polycarbonate films.

1. Place two polycarbonate films in the holder onto a droplet of water, which has been positioned into the holder with the help of one syringe.

2. Wash the device with buffer. When the membranes are intact pressing the syringes requires certain strength.

3. Place the lipid suspension in one of the syringes and press the suspension through the polycarbonate film for 21 times (see Note 8).
Preparation of Small Unilamellar Vesicles by Sonication

Alternatively, small unilamellar vesicles of a size that is typically <100 nm can be produced by sonication. This section thereby replaces Subheading “Preparation of Unilamellar Vesicles by Extrusion.”

1. Position the sonicator tip centrally into the lipid suspension and the sample tube in an ice bath for cooling. Avoid direct contact of the sonication tip and the surface of the tube as both the tip and the glass tube may be damaged.

2. Sonication is performed at intervals that avoid sample heating until the suspension clears. The time varies between 10 and 60 min depending on the lipid composition and the salt concentration.

3. After sonication particles that tend to come off the metal tip of the sonicator are removed by centrifugation in a tabletop centrifuge at 10,000 × g for 10 min (e.g., the highest speed on an Eppendorf-centrifuge, MiniSpin®) (see Note 9).

Membrane Reconstitution of the Protein

In the simplest case the lipid vesicle suspension and the protein solution are mixed and the protein spontaneously inserts into the lipid membranes. This is the case for membrane-active colicin domains, diphtheria T-domain as well as several members of the Bcl-2 family of proteins and the protocols described here follow our work on these proteins [30, 32, 45]. The buffers involved in this step have to be adapted to the requirements of the protein and may for example involve triggering of membrane insertion by a decrease in pH [45, 46] (see Note 6).

Reconstitution of Water-Soluble Proteins into Lipid Vesicles

Many membrane proteins need to be solubilized and stabilized by detergent during the extraction and purification steps. In these cases, the protein–detergent solution and lipid bilayer suspension are mixed and the detergent molecules are removed by one of the methods outlined below. Which detergent and which of the methods of its removal works best for a given protein has to be tested or the information may be available in the literature (see Note 10). Two alternative procedures for removing the detergents after protein reconstitution into liposomes are given here in Subheadings “Detergent Removal Using Dialysis Tubes” and “Detergent Removal Using Micro Beads.”

Removal of Detergent

1. The detergent molecules are removed in a dialysis chamber with pore size (MWCO) of 3.5–10 kDa with a sample volume of 3–12 or 0.5–3 mL. The pore size should be sufficiently small to avoid loss of the protein but large enough to allow efficient exchange of buffer and detergent. The sample (some milliliters) is placed into the dialysis chamber by a syringe equipped with
an infusion needle following the instructions of the manufacturer.

2. The closed dialysis tube is placed into a large beaker (of volume >200 times the sample volume). The liquid in the beaker is constantly agitated by a magnetic stirrer and placed at for 12–16 h typically at 4 °C or at room temperature, respectively (depending on the phase transition temperature of the lipids and the requirements of the protein sample).

3. The buffer is replaced every 4 h.

Detergent Removal Using Micro Beads

The hydrophobic interaction of detergents like CHAPS and octylglucoside with Bio-Beads is an alternative procedure for the effective removal of detergents after reconstitution of proteins into model membranes [47].

1. Detergent-containing solutions are incubated with for instance Bio-Beads SM-2 (BioRad Laboratories, Richmond, CA) for 1 h with gentle shaking at room temperature and consequently eluted to get a detergent-free sample.

2. This procedure is repeated several times, as some less hydrophobic detergents like CHAPS associate less well with the beads [48].

3. The sample can be concentrated as in Note 11 describes the usage of beads for the reconstitution of membrane proteins in a unique orientation.

Reducing the Volume of the Protein–Lipid Sample After Dialysis

In order to reduce the sample volume of the protein–lipid suspension the sample is ultracentrifuged after the dialysis step.

1. The suspension is placed into 25 × 89 mm polycarbonate tube (Beckman, Palo Alto, CA) and centrifuged at >100,000 × g for 5 h, 4 °C.

2. Consequently, the supernatant is separated from the pellet and tested for protein remaining in solution, for instance by UV-absorption at 280 nm.

3. The pellet is washed and resuspended in sterile filtered water, complemented with 0.02% sodium azide (w/w) before being spread on glass plates (Subheading 3.1.2). This assures that only lipid-associated protein contributes to the solid-state NMR measurements and the salt concentration in the sample is reduced which is advantageous for the NMR spectroscopic performance (cf. Subheading 3.2).

3.1.2 Formation of Oriented Lipid Bilayers on Solid Supports

A lipid vesicles suspension which is depleted of its bulk water and equilibrated at defined relative humidity spontaneously forms stacks of oriented bilayers on glass plates or other solid or polymer supports. However, samples of proteins reconstituted in lipid
vesicles are typically of several milliliters and contain salt, which would concentrate during the drying process and, therefore, should be removed before the sample is stacked. This can be achieved by dialysis and/or ultracentrifugation (cf. Subheading “Removal of Detergent/Buffer Exchange”). Alternatively, a concentration step followed by some washing steps can be used to reduce the salt concentration.

Concentration of the Samples

The samples can be easily concentrated by centrifugation devices where the solvent passes a filter of defined molecular size, but larger macromolecules or aggregates are retained. Different systems are available and they usually come with instructions how to use them. In our hands devices where the membrane runs parallel to the centrifugal forces work well as this arrangement avoids that the biological material precipitates onto and clogs the filter (e.g., Macrosep® Centrifugal Devices). These devices can also be used for washings and buffer exchange. However, it should be kept in mind that with each centrifugation (which takes several hours) only about 90% of the buffer has exchanged and that the volume inside the membranes remains inaccessible. The final volume should be in the range of 0.5 mL. For DNP/solid-state measurements see Note 5.

Application of Lipid Bilayers onto Solid Supports for Alignment

This part of the protocol is illustrated in [14].

1. Carefully place about 30 clean ultrathin microscope cover glasses side by side on two or three glass petri dishes. Analogous procedures apply for other solid supports such as HDPE films, which are also a good alternative for DNP/solid-state NMR experiments where glass plates have shown to be unsuitable (see Note 5). Use fine watch maker forceps to manipulate the glass plates. Apply equal quantities as small elongated droplets onto the central areas of all but one glass plates using a Hamilton syringe. Keep one glass plate on the side to be used during the stacking of the plates (step 3). Let the sample dry in air until most of the solvent has evaporated. Should dehydration be harmful to your protein perform this step in a more controlled fashion for example in a chamber of defined relative humidity (see Note 3). Should the volume be too large to allow for the stable application onto the glass plates in a single round, it is possible to apply part of it, dry off some of the liquid and reapply another droplet onto the same region of the glass plate.

2. After the sample has been equally distributed and the bulk solvent evaporated in air the samples are placed in a closed chamber of 93% r.h. (e.g., desiccator or a closed plastic box) and left to equilibrate for typically about 1–3 days. This humidity is established in contact with a saturated solution of KNO₃. Other hydration conditions are also possible (see Note 3).
3. Once the lipid films become translucent and soft (see Note 3), the glass plates are stacked on top of each other, with one empty glass plate used to cover the remaining surface. Membrane alignment can be improved by shearing with delicate pressure and small movements. The stack is stabilized by wrapping with Teflon tape and the whole sample sealed in a plastic wrapping using an impulse sealer. The volume of the sample should be fit tightly into the NMR coil (cf. Subheading 3.2.1, step 6).

3.2 Solid-State NMR Measurements

In this paragraph, the setup procedure for four types of NMR measurements is described. However, be aware of the precautions that have to be taken in the proximity of the high-field magnet and due to the high operating voltage of the electronic equipment. Because of these potential dangers the beginner should receive a detailed hands-on introduction into the use of a solid-state NMR spectrometer as well as into the language of the user’s interface. Furthermore, it is assumed that the pulse programs have been established and tested. Some simple setup procedures and pulse
Fig. 2 Typical line shapes of proton-decoupled 31P solid-state NMR experiments from oriented samples of liquid disordered phosphatidylcholine bilayers. (a) Nonoriented sample where the powder pattern line shape reflects the functionality of the chemical shift interactions as well as the distribution of molecules relative to B_0. The chemical shift range of about 45 ppm is typical for liquid disordered phosphatidylcholine bilayers. (b) Well-aligned sample where nearly all phospholipid oriented in a narrow range relative to B_0. (c) A small portion of nonoriented sample is superimposed on oriented phospholipids. (d) Mixture of phosphatidylcholine (PC) and phosphatidylserine (PS). The two main intensities around 30 and 40 ppm indicate that most lipids are well aligned albeit PC and PS exhibit different chemical shifts and chemical shift anisotropies. A small fraction of phospholipid resonates at values up to –20 ppm indicative of a limited amount of orientational or of conformational
sequences such as standard 1H acquisition, Hartmann–Hahn matching or cross-polarization are also explained in an applications-oriented manner in ref. 51. Furthermore, ref. 14 describes some additional 2H and 31P{1H} solid-state NMR measurements of oriented or non-oriented samples on membrane-associated peptides as well as magic angle sample spinning experiments, which may be also useful in this context.

3.2.1 Verification of Sample Alignment by Proton-Decoupled 31P Solid-State NMR Spectroscopy

1. Insert a sample of 85% H$_3$PO$_4$ into the center of the NMR coil. Close probe head and insert the probe into the NMR magnet. Connect the 31P (X) and the 1H electronic circuits of the probes to the respective electrical connections with incoming RF pulses from the console and outgoing signal from the sample via filters and the preamplifier that covers the 31P Larmor frequency.

2. Tune and match the probe (31P and 1H electronic circuits).

3. Using a simple pulse-acquisition sequence vary the pulse length to determine the maximal and the zero intensities (90° and 180° pulses, respectively). During this setup procedure using an isotropic liquid the 1H decoupling is unnecessary and can even heat and damage the sample and/or probe head as long acquisition times are used to fully record the free induction decay. Adjust the carrier frequency to have the signal close to the center of your spectral window and all the other parameters according to Table 1. Adjust the receiver gain to avoid saturation and good sensitivity at the same time. Using a short pulse adjust and save the phases to have a purely positive signal intensity. Calibrate the chemical shift scale with the maximum of the phosphoric acid signal at 0 ppm. Adjust the power of the pulses to have a 90° pulse in the range of 5 μs. Once these parameters have been determined for a spectrometer and probe they provide a valuable starting point for future setup procedures, which should then require only minor readjustments.

4. Change the spectrometer settings to acquire the 1H signal. Adjust the power levels of the 1H channel to have a 90° pulse length ≤7 μs and the 1H carrier frequency using a procedure analogous to the previous step. This step is required only once.

Fig. 2 (continued) heterogeneity at the level of the phospholipid head groups. Possible morphologies as well as the dynamics explaining such line shapes are discussed in [21]. (e) Bicellar mixture of DMPC, DMPG, and DHPC short-chain lipids (2.4:0.8:1 molar ratio). The intensities at −15 to −10 ppm are indicative that the bilayer made predominantly from DMPC and DMPG orients with the normal perpendicular to the magnetic field direction. The close to isotropic signal intensity at −1 ppm is mostly from the DHPC lipid which forms the rim and undergoes fast realignment.
in a while to measure or control the \(^1\)H decoupling field strength and the \(^1\)H frequency.

5. Using the \(^{31}\)P and \(^1\)H power levels determined in steps 3 and 4 adjust the durations of the \(90°-\tau-180°-\tau\)-acquisition with \(^1\)H decoupling) pulse program [52]. Adjust the \(90°\) and \(180°\) pulses as determined and all the other parameters according to Table 1. Using the reference sample the performance of the pulse program can be tested by adding a full phase cycle (16 scans). Check the FID for being additive from scan to scan, for the absence of artifacts in its beginning (probe ringing may require longer \(\tau\)), or spikes (reduction of the decoupling power and/or cleaning the coil may help).

6. Stably insert the sample into the center of the NMR coil (see Note 4). Reconnect the probe, tune and match (steps 1 and 2) for each new sample and after equilibrating to a new temperature. Use the same parameters as before (Table 1) but reduce the recycle delay to 1.5–3 s. Readjust the receiver gain for the lipid sample for maximal sensitivity without saturating the receiver. For a sample containing 100 mg phospholipid the signal should become available with the first scans, a spectrum with good signal-to-noise in a few minutes.

By inspecting (and simulating) the resulting proton-decoupled \(^{31}\)P solid-state NMR experiments verify the morphology, alignment and integrity of your lipid bilayer before and after the \(^{15}\)N NMR measurements (Fig. 2).
3.2.2 Proton-Decoupled 15N Cross-polarization Solid-State NMR Spectroscopy of Membrane Samples

The setup procedure for a one-dimensional cross-polarization pulse sequence is described albeit with settings that already aim at being sufficiently close for the two-dimensional correlation experiment (separated local field spectroscopy) described in Subheading 3.2.3.

1. Insert a sample of 15NH4Cl (or (15NH4)2SO4) into the center of the NMR coil. Close probe head and insert the probe into the NMR magnet. Connect the 15N (X) and the 1H electronic circuits of the probes to the respective electrical connections with incoming radiofrequency pulses from the console and outgoing signal from the sample via filters and the preamplifier that covers the 15N Larmor frequency.

2. Tune and match the probe (15N and 1H electronic circuits).

3. To acquire 1H signals using a simple pulse-acquisition sequence use a short pulse (e.g., 2 μs) to adjust and save the phases to have a purely positive signal intensity. Adjust the receiver gain to avoid saturation and good sensitivity at the same time and the carrier frequency to have the signal close to the center of your spectral window. Keep a note of this frequency which should also be used later during cross-polarization and decoupling. The spectrum is relatively broad, but the maximum gives a good initial value for the proton carrier frequency (see Note 12). After these adjustments verify the phase settings. Then vary the pulse length to determine the maximal and the zero intensities (90° and 180° pulses, respectively) and adjust the power of the pulses to have a 90° pulse in the range of 4 μs. Once these parameters have been determined for a spectrometer and probe they provide a valuable starting point for future setup procedures, which should then require only minor readjustments (see Notes 13 and 14).

4. Switch to the acquisition of the 15N signal. It is recommended to use or program a cross-polarization sequence [51] with the possibility to vary the power levels of the 90° 1H pulse, the 1H and 15N contact pulses and the 1H decoupling independently (cf. the different CP pulse schemes shown in Fig. 3). Keep the 1H power level fixed as determined in step 3 for all intervals (90° pulse, contact time and decoupling during acquisition), set the length of the 90° 1H pulse as determined, chose a contact time of ≤5 ms and vary the power level of the 15N channel to obtain the maximal intensity. Once you obtain the first signal correct and save the phases for a positive 15N signal, calibrate the chemical shift scale with the maximum of the ammonium peak of 15NH4Cl at 39.3 ppm [53], and set the 15N carrier frequency close to 0 ppm (see Note 15). In case major corrections of the frequencies had to be made check and readjust the power levels for maximal signal intensity as well as the phases. At all times adjust the receiver gain to avoid saturation and good sensitivity at the same time.
Once the cross-polarization conditions have been optimized, verify that the 90° 1H pulse provides indeed the maximal ^{15}N signal intensity within the cross-polarization pulse sequence. The $15N$ signal should be zero when a 180° 1H pulse is applied.

Fig. 3 (a) PISEMA pulse sequence. (b) Proton nutation pulse sequence with frequency offset of the 1H pulse by $+\Delta \nu$ or $-\Delta \nu$, respectively. (c) ^{15}N nutation experiment. The cross-polarization (CP) and decoupling steps involve a frequency that is well-centered with respect to the 1H spectrum (“on-resonance”). The prime in panel b indicates that at this stage the offset is arbitrary, whereas during Lee–Goldburg decoupling it has a well-defined value (Figs. a and 4).

5. Once the cross-polarization conditions have been optimized, verify that the 90° 1H pulse provides indeed the maximal ^{15}N signal intensity within the cross-polarization pulse sequence. The ^{15}N signal should be zero when a 180° 1H pulse is applied. Once all these parameters have been determined for a spectrometer and probe they provide a valuable starting point for
future setup procedures, which should then require only minor corrections (see Notes 13 and 14). By always comparing the noise level and the signal intensity with previous settings using the same reference sample it is possible to keep track of the performance of the probe and the spectrometer.

6. Using the reference sample the performance of the pulse program can be tested by adding a full phase cycle (eight scans). Check the growing free induction decay for being additive from scan to scan.

7. Remove the reference sample and stably insert the membrane sample into the center of the NMR coil, tune and match the ^{15}N and ^1H channels for each new sample.

8. Switch to the acquisition of ^1H. Record the ^1H NMR spectrum of the sample and adjust the ^1H power levels to obtain the same 90°/180° pulse length as determined in step 5. Depending on the content of water and salt significant increases in power may be necessary (typically by 1–3 dB) to obtain the same probe performance (i.e., effective B_1 field) (see Notes 4 and 14).

Switch to the cross-polarization pulse program and the spectrometer to the acquisition of ^{15}N. Adjust the following parameters by keeping the previous ^{15}N—but by using the new ^1H power levels: 90° ^1H pulse as determined in steps 5 and 8, contact time 0.4–1 ms, spectral width 40 kHz, and an acquisition time of 1–3 ms (long enough to avoid truncation of the FID, but short enough to avoid excessive sample heating during ^1H decoupling). Adjust the receiver gain to avoid saturation and good sensitivity at the same time. Use the chemical shift calibration of step 4. Check the first acquisitions (mostly noise) for the absence of artifacts in its beginning and spikes throughout the FID (reduction of the decoupling power and/or cleaning the coil may help). During acquisition the sample should be cooled with a stream of air, which can be humidified by bubbling through a gas wash bottle provided that acquisition is at ≥room temperature (if the temperature of the water bath is above that of the connecting lines and probe water condensation will occur at the colder sites). It is recommended to check the tuning of the ^1H channel after a few hours of signal averaging as water loss or redistribution within the sample can occur due to RF heating (see Notes 4 and 5) (Table 2).

This family of experiments reveals from the labeled amide sites the ^{15}N chemical shift as well as the ^{15}N-^1H dipolar coupling [54], both parameters being orientation dependent [17]. The two-dimensional experiment presented here has been shown to provide additional spectral resolution when prelabeled polypeptides are investigated (Fig. 3a). It consists of two parts: a cross-polarization experiment (Subheading 3.2.2) and a SEMA pulse train during
the t_1 evolution period (Subheading “Adjustment of the SEMA Pulse Train”). Following the flow of events described in Fig. 5 the corresponding settings are optimized step by step and should start with the simple one-dimensional cross-polarization setup described in Subheading 3.2.2 using for example a 15N-ammonium salt as a reference sample.

Adjustment of the SEMA Pulse Train

Before setting up the SEMA pulse train the B_1 field for the SEMA pulse train has to be adjusted and calibrated (see Note 16). As the B_1^{eff} field determines the width of the spectral window in the t_1 dimension a minimum of about 50 kHz is required for B_1^{eff} field to cover well the dipolar 15N-1H coupling in the amide bonds of peptides and proteins (≤ 20 kHz; [15]) (see Note 17). Aiming at an efficient B_1 field of 65 kHz seems reasonable and this value will be adjusted during the following two-dimensional nutation experiments (Subheading “Adjustment of the SEMA Pulse Train”).

Determination of the Power Level for the Proton B_1^{eff} Field

1. Before starting this optimization step the nitrogen spectrum should be calibrated following Subheading 3.2.2, step 4 and the nitrogen carrier frequency should thereafter not be altered. Although the position of the proton carrier will be verified and adjusted during this experiment a good starting value will significantly accelerate the optimization steps (cf. Subheading 3.2.2, step 3). The CP conditions of the 1H nutation experiment (Fig. 3b) are also taken from the previous settings (Subheading 3.2.2).

2. The effective B_1^{eff} field is measured from a nutation experiment (Fig. 3b) where the initial proton pulse is incremented in a table for proton-decoupled 1H-15N cross-polarization experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Standard cross-polarization (CP) experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference sample</td>
<td>15N-ammonium chloride or 15N-ammonium sulfate</td>
</tr>
<tr>
<td>Parameter for optimization</td>
<td>Proton 90° pulse (power level, duration) 15N-1H CP condition (power level 1H and 15N) 15N carrier frequency, 1H carrier frequency</td>
</tr>
<tr>
<td>Typical 1H B_1 field for the initial 90° pulse</td>
<td>62.5 kHz (corresponding to a 90° pulse of 4 μs)</td>
</tr>
<tr>
<td>Typical 1H B_1 field for CP</td>
<td>62.5 kHz (4 μs)</td>
</tr>
<tr>
<td>CP time for amides</td>
<td>300–800 μs</td>
</tr>
<tr>
<td>Recycle delay</td>
<td>3 s for amides (this time could in principle be shortened but for protecting the sample from excessive heating due to RF irradiation), >5 s for ammonium salts</td>
</tr>
</tbody>
</table>
systematic manner during t_1 in steps of 4 μs for a spectral width of 250 kHz up to typically 0.25 ms for a resolution of 4 kHz. The carrier frequency of this initial pulse is fixed to either $\nu_0 + B_{1\text{eff}} \times \cos(54.74^\circ)$ or $\nu_0 - B_{1\text{eff}} \times \cos(54.74^\circ)$, respectively, where ν_0 is the center frequency and $B_{1\text{eff}}$ the intended effective B_1 field (which should match the 15N B_1 during t_1, Fig. 3a). The detection is performed on the 15N channel after cross-polarization to avoid the necessity for analysis of the broad 1H signal of the protons. The resulting oscillation of the 15N cross-polarization signal (Fig. 3b) reflects the nutation frequency of the 1H dipolar coupled magnetization around the magic angle during t_1 (Fig. 3a) and is easily measured after Fourier transformation in t_2 and t_1. The power level of this initial 1H pulse is adjusted until the intended effective B_1 field is observed in the nutation experiment (Fig. 3b). In order to specifically detect the nutation frequency of the directly bonded amide protons and avoid offset miscalibrations the contact time must be set equal to a small value, ca. 50–100 μs. 3. The proton center frequency is then verified and corrected by comparing a nutation experiment with positive and negative frequency offset of the initial proton irradiation period (both experiments should give similar $B_{1\text{eff}}$ if the center frequency is set correctly). If this is not the case modify the center frequency and go back to step 2. Perform steps 2 and 3 in an iterative manner where adjustments are made until a match is obtained. Note, that the CP conditions should be verified after modifications of the center frequency (see Notes 14 and 18) (Table 3)

Determination of Power Level for the Nitrogen B_1 Field

The B_1 field for nitrogen is measured by a 15N-nutation experiment (Fig. 3c). It consists of a CP experiment followed by an incremented 15N irradiation period. The experiment consists in adjusting the power level of the 15N irradiation until the nutation of this nucleus

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Typical parameters for a 1H nutation experiment with a frequency offset detected through 1H-15N cross-polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment</td>
<td>1H nutation CP experiment (Fig. 3b)</td>
</tr>
<tr>
<td>Sample</td>
<td>15N ammonium chloride or sulfate</td>
</tr>
<tr>
<td>Parameter for optimization</td>
<td>1H power level for requested $B_{1\text{eff}}$ field</td>
</tr>
<tr>
<td>Typical 1H $B_{1\text{eff}}$ field</td>
<td>65 kHz (corresponding to a frequency offset of 37.528 kHz)</td>
</tr>
<tr>
<td>Typical 1H B_1 field for CP</td>
<td>62.5 kHz (4 μs)</td>
</tr>
<tr>
<td>CP time</td>
<td>50–100 μs</td>
</tr>
</tbody>
</table>
matches B_1^{eff} of the 1H (cf. Subheading “Determination of the Power Level for the Proton B_1^{eff} Field”); thus, Hartmann–Hahn matching is achieved during the SEMA pulse train (t_1 period in Fig. 3a) (Table 4).

Assembly into the PISEMA Pulse Sequence and Verification

To assemble the building blocks with the parameters adjusted in the previous sections the PISEMA pulse-sequence is first tested on a reference sample. Ideally, to this end a monocrystal of $[^{15}\text{N}]-\text{Ac-Leu}$, $[^{15}\text{N}]-\text{Ac-Gly}$, or another N-terminally protected amino acid is available. The free induction decay of the 15N signal should be clearly visible at least until 5 ms of Lee–Goldburg decoupling period (i.e., the 325th 1D slice at $B_1^{\text{eff}} = 65$ kHz). This assures that the parameters for homonuclear decoupling were determined correctly. New pulse sequence should be tested with a powder of molecule representing a peptide bond, that is, an N-terminally protected amino acid such as $[^{15}\text{N}]-\text{Ac-Leu}$, $[^{15}\text{N}]-\text{Ac-Gly}$, etc. With such a compound, one should obtain a well-known “butterfly” spectrum with correct dipolar couplings. This allows verification of the correctness of the data processing protocol. The number of scans should be enough to unambiguously see the signal in nearly each 1D spectrum (typically 4000 scans for membrane samples, which results in days of acquisition, see Note 14). After acquiring of the first few 1D spectra oscillations of the signal should become apparent. For membrane samples the 1H power levels can be adjusted with higher precision by using one-pulse 1H nutation experiment (Subheading “Determination of the Power Level for the Proton B_1^{eff} Field” and Note 18). To compensate for B_1 losses in wet samples it can be advantageous to test and fine-tune the PISEMA experiment on a fully hydrated biological sample such as magnetically oriented filamentous bacteriophage preparations (see Notes 4 and 14).

Table 4

Typical parameters for a 15N nutation experiment detected through 1H–15N cross-polarization

<table>
<thead>
<tr>
<th>Experiment</th>
<th>15N nutation CP experiment (Fig. 3c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>15N ammonium chloride or sulfate</td>
</tr>
<tr>
<td>Parameter for optimization</td>
<td>15N power level for requested B_1 field</td>
</tr>
<tr>
<td>Typical 15N B_1 field (matching the 1H B_1^{eff} under off-resonance irradiation)</td>
<td>65 kHz</td>
</tr>
<tr>
<td>Typical 1H B_1 field for CP</td>
<td>62.5 kHz (4 μs)</td>
</tr>
<tr>
<td>CP time</td>
<td>400 μs</td>
</tr>
</tbody>
</table>
The experiments described here allow one to monitor a variety of physical properties of the membrane in the presence or in the absence of protein. These experiments require that during the preparation of membranes deuterated lipids are used and depending on the deuteration pattern different properties of the membranes can be revealed. For example, by incorporating fatty-acyl chain deuterated phospholipids the lipid order parameter is monitored as a function of lipid composition, label position, temperature, buffer and/or the presence of protein. The 2H spectra therefore reveal membrane disruptive properties of proteins and peptides [21, 55]. By mixing deuterated and nondeuterated lipid species selective interactions of the polypeptides with one lipid over the other are detected [24]. Finally, the 2H spectra of lipids deuterated at the lipid head groups have been calibrated and used for the investigations of electrostatic interactions at the level of the bilayer interface [25, 26]. The measurements can be performed on nonoriented (usage of the pellet that result from Subheading 3.1.1) or oriented samples (procedures Subheadings 3.1.1 and 3.1.2). The protocol is also provided and illustrated in [14].

1. Insert a sample of deuterated water into the center of the NMR coil. Close the probe head and insert the probe into the NMR magnet. Connect the 2H (X-channel) electronic circuit of the probe to the console. This line carries incoming radio frequency (RF) pulses from the console to the probe and outgoing signal from the sample via the preamplifier (that is tuned to the 2H Larmor frequency) to the detector.

2. Tune and match the probe for the 2H carrier frequency.

3. Using a simple pulse-acquisition sequence vary the pulse length to determine the maximal and the zero intensities (90° and 180° pulses, respectively). Adjust the carrier frequency to have the signal close to the center of your spectral window and all the other parameters according to Table 5. Adjust the receiver.

Table 5

Typical parameters for 2H-echo experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>2H echo experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference sample</td>
<td>Deuterium-enriched water</td>
</tr>
<tr>
<td>Parameters for optimization</td>
<td>2H 90° (power level, duration)</td>
</tr>
<tr>
<td></td>
<td>2H carrier frequency</td>
</tr>
<tr>
<td>Typical 1H B_1 field for 2H 90° pulses</td>
<td>>50 kHz (corresponding to a 90° pulse of <5 μs)</td>
</tr>
<tr>
<td>Recycle delay</td>
<td>0.3 s for phospholipids in a bilayer environment; 5 s for deuterated water</td>
</tr>
<tr>
<td>Interpulse delay (τ)</td>
<td>40 μs</td>
</tr>
</tbody>
</table>
gain to avoid saturation and good sensitivity at the same time. Using a short pulse adjust and save the phases to have a purely positive signal intensity (Lorentzian). Calibrate the chemical shift scale by setting the maximum of the 2H$_2$O signal to 0 Hz. Adjust the power of the pulses to have a 90° pulse in the range of ≤ 5 μs. Once these parameters have been determined for a spectrometer and probe they provide a valuable starting point for future setup procedures, which should then require only minor readjustments.

4. Using the 2H power levels determined in step 3 adjust the durations of a 90_x-τ-90_y-τ-acquisition pulse program [86]. Adjust the 90° pulse as determined and all the other parameters according to Table 5. Using the reference sample the performance of the pulse program can be tested by adding a full phase cycle (eight scans). Check that the oscillations (free induction decay—FID) recorded from each repetition add to the overall signal intensity, for the absence of artifacts in its beginning (probe ringing may require longer τ) or of spikes (cleaning the coil may help). With some spectrometers, an installed lock unit may interfere with the signal. This problem can be solved by reducing/turning off the lock power.

5. Stably insert the membrane sample into the center of the NMR coil. Reconnect the probe, tune and match (steps 1 and 2) for each new sample and after equilibrating to a new temperature. Use the parameters determined before (Table 5). Readjust the receiver gain for the lipid sample to obtain the maximal sensitivity without saturating the receiver. The signal of deuterated lipids should become visible within minutes, a spectrum with reasonable signal-to-noise in about 0.5–1 h. Note that the signal from natural abundance deuterium in water may show up first and can be reduced by using deuterium-depleted water for sample hydration.

4 Notes

1. The solubility of lipids in chloroform and dichloromethane are very similar. Therefore, preference should be given to the latter as it evaporates more easily, has less of an effect on the environment and is less toxic. To dissolve lipids and peptides solvents such as 2,2,2-trifluoro ethanol hexafluorisopropanol, formic acid, and/or MilliQ water are commonly used [14]. However, the use of any of such solvents to complex proteins can cause irreversible denaturation.

2. Often it is desired to test the effect of lipid composition on the membrane protein–lipid interactions. On the one hand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC)
represent well the phospholipid composition of many biological membranes as the choline head group is abundant in the bilayers of higher organisms. The composition of these membranes is furthermore mirrored by a saturated fatty acyl chain at position 1 and an unsaturated chain at position 2 and POPC represents well their average hydrophobic thickness. Notably, whereas some polypeptides exhibit stable structural properties in a variety of different lipid membranes [43] others are quite sensitive to even small changes in lipid composition [57]. Furthermore, the negative charges of eukaryotic membranes are often represented by phosphatidylserine, and these membranes are also rich in cholesterol. On the other hand, a simple bacterial membrane mimic could be phosphatidylethanolamine/phosphatidylglycerol 3:1. Notably, however, many of these lipid components exhibit low solubility in alcohols. Therefore, dichloromethane (or chloroform) provides an alternative for most long-chain lipids (e.g., see the catalog information by Avanti Polar Lipids, Alabaster, AL).

3. The equilibration period for hydration ranges from a few hours up to a few days. Hydration can be accelerated by passing through a vapor steam or by adding microliter amounts of water per glass plate. Diverse equilibration conditions are obtained by contact of the atmosphere with saturated solutions of LiCl (15% r.h.), K₂CO₃ (44% r.h.), NaBr (57% r.h.), NaCl (75% r.h.), KCl (86% r.h.), KNO₃ (93% r.h.) or pure water (100% r.h.) [58]. Extended equilibration and storage at 100% r.h. should be avoided as this promotes microbial growth. Hydration chambers can be easily prepared by filling a plastic box (e.g., lunch or plastic box) with salt and some water. An inverted petri dish serves as a platform to avoid the direct contact of the salt solution with the sample.

4. Usually solid-state NMR experiments are set up with the help of standard samples with high signal intensity. By doing so it is assumed that the parameters do not change between the standard and the sample of interest. However, with the advent of high-field NMR spectrometers the proton B¹ fields tend to be attenuated in wet samples (i.e., hydrated lipid bilayers). This can be corrected by readjusting the proton parameters through a direct measurement of the proton parameters on the sample itself [14]. With linear amplifiers the correction increments (measured in dB) should be the same for all of the power levels. If this is not the case the initial pulse and the cross-polarization need to be adjusted and the decoupling power should remain sufficiently strong (≥50 kHz). Depending on the instrumentation it may be easier to use the same power levels for all the periods of proton irradiation.
Furthermore, conventional probes tend to heat the sample upon radiofrequency irradiation, which leads to the loss of water and changes of the proton settings during long acquisitions. In such cases and in order to enhance sample stability the following modifications help (individually or in combination): reduction of the CP period (0.3 ms often provides more signal intensity than 1 ms), acquisition times and power levels of decoupling as short/small as possible (e.g., 1.5 ms, B_1 less than 50 kHz), increased recycle delays. Furthermore, the recent development of probe heads where the coil center is depleted of the electric-field (e-free) has the advantage to reduce heating of the sample. In addition, the proton-tuning and -parameters are barely dependent on the water content of the sample. This makes e-free probes an ideal tool for more sophisticated NMR experiments like SEMA, where a precise adjustment of the proton parameters is essential.

5. For DNP/solid-state measurements biradicals need to be added to the sample [37]. This has been achieved in different manners depending on the detailed sample conditions, the solid-state NMR approach used and the polypeptide under investigations. For MAS experiments the highest enhancements have been obtained when soaking proteoliposome pellets with “DNP juice,” a biradical solution containing deuterated solvent and a high amount of the cryoprotectant glycerol [59, 60]. However, no bulk water is present in oriented membrane stacks. Therefore, the addition of cryoprotectants is not necessary and only interferes with membrane alignment. In these cases, the concentrated dispersion after reconstitution of the protein into the membranes (Subheading “Concentration of the Samples”) is transferred (by centrifugation) into a tube containing the dry powder of a water soluble biradical, such as TOTAPOL or AMUPOL [37]. A final concentration of 10–15 mM (calculated by taking into consideration the total sample volume) has been found optimal (i.e., typically ~0.3 mg of biradical for 30 μL volume or for 30 mg of lipids) [37]. After a few freeze–thaw–vortexing cycles the mixture can be applied to polyethylene films and treated similar to the usual glass plate sample (see Subheading “Application of Lipid Bilayers onto Solid Supports for Alignment”). Note, because of their low heat conductivity glass plate samples have been found unsuitable for DNP experiments and polymer films and sapphire plates have been introduced for static oriented DNP/solid-state NMR measurements [36] or to magic angle oriented sample spinning on rolled up polymer cylinders [61]. When oriented membrane samples encompassing peptides have been prepared the biradicals were applied early on when dissolving the lipids and the peptides in organic solvent
but this is not feasible for most membrane proteins.

In analogy to DNP experiments under MAS conditions, deuterated lipids and/or hydration with D$_2$O/H$_2$O vapor have been tested for oriented DNP/solid-state NMR samples, however, for samples hydrated at 93% r.h. so far the DNP enhancement were found unaffected by deuteration [37]. Because bicelles orient in the magnetic field only in a limited temperature range [29] these have to our knowledge so far not been investigated by DNP solid-state NMR.

The CP contact times under DNP conditions (100 K) range tend to be somewhat shorter [37, 41]. The 1H T_1 relaxation times are dependent on the type and concentration of the biradical and the temperature. For samples with TOTA-POL or bTbk typical values are ~1.2 s, for AMUPol or PyPol-C16 ~2.3 s [37]. Nevertheless, a 3 s recycle delay is typically maintained.

6. A wide variety of buffers can be used including Tris, HEPES, or citrate buffer. However, the interference of the buffer with the NMR experiments should be considered. For example, phosphate buffers result in large isotropic peaks hampering the analysis of 31P NMR powder patterns of phospholipids, water contains a significant amount of deuterium (which can be reduced by using deuterium-depleted water) or other buffers cause background signals in 13C NMR experiments. Furthermore, high salt concentrations interfere with the tuning of NMR probes and the radio frequency irradiation during NMR spectroscopy (see Note 4). Furthermore, extreme pH values cause the hydrolysis of ester bonds and thereby lipid degradation. Long-term stability of lipids can be assured by pH 6–7 [62], reduced hydration and/or storage in the freezer. When oriented samples are prepared at <100% r.h. it should further be considered that buffer and salt are concentrated into the small intermembrane space where the residual water molecules interact with the adjacent membranes. We have noted that the presence of buffer and salts often degrades the quality of the membrane alignment (e.g., [63]).

7. For freezing the lipid samples liquid nitrogen is also used. However, by doing so, we have observed the occurrence of isotropic signal intensities in 31P NMR spectra of pure lipids which may be related to the speed of freezing and the corresponding ice/glass formation. Therefore, slow freezing in a −20 °C freezer seems a better choice. The effect of freeze–thaw cycles on different membranes has been analyzed previously [64].

8. For extrusion, the lipid concentration should not exceed a concentration of 10 mM (7–8 mg/mL). Furthermore, lipids...
with a phase transition temperature above room temperature might require relatively high forces for extrusion.

9. The relatively small diameter of the sonicated vesicle imply relatively high curvature of the bilayers, which might influence the interaction to membrane proteins and the small radius makes sedimentation by centrifugation very difficult.

10. Table 6 provides some basic physical parameters for a number of detergents used for the purification and/or structural analysis of membrane polypeptides. These data give some first indication of their suitability for the reconstitution protocol of a given protein.

11. Beads are also used to control the orientation of proteins reconstituted into lipid bilayers, like proton channels [65]. Here, a recombinantly expressed protein contains a long histidine tag (His10), which is used for immobilized metal affinity-chromatography interactions with commercially available nickel-NTA silica beads (Qiagen Inc., Valencia, CA). Following the manufacturer’s instructions, the recombinant proteins are bound and immobilized on nickel beads via the decahistidine tag. Thereafter the protein–bead suspension is reconstituted into lipid vesicles by the detergent dialysis method. In doing so the part of the protein directly linked to the histidine tag faces the outer membrane of the double layer and is thereby available for interaction with the ligands in the bulk solution. In cases where further investigations of protein interactions are planned by NMR spectroscopy, the
paramagnetic nickel, leading to line broadening, should be exchanged with diamagnetic Zn$^{2+}$ ions. To do so, nickel-beads are washed with a 0.3 mM EDTA solution to remove the nickel ion and consequently washed with water. Finally, incubation with 100 mM zinc sulfate solution recharges the nitrilotriacetic acid (NTA) matrix, which then is used as described before.

12. If the 1H line width of the ammonium salt hampers the accurate determination of the 1H frequency a water or a humid membrane sample can be used giving sharper line width and allowing a more accurate frequency setting. The 1H frequencies determined in Subheading 3.2.1 should be close to the one determined in this context.

13. Once the approximate settings of 1H power and pulse length have been obtained with the probe and the same type of samples step 3 can be omitted as these parameters can be optimized in further experiments by first adjusting the Hartmann–Hahn matching conditions (step 4) and then by variation of the initial 1H pulse (step 5). A pulse program that allows for the independent modification of the proton power levels during the various phases of the experiment (90° pulse, CP, decoupling) makes this task easier as the level of the 90° pulse can be changed without affecting the CP matching condition. At the Hartmann–Hahn matching condition of static samples the X and the 1H spins precess at the same speed in the rotating frames defined by the respective B_1 fields (i.e., $\gamma_X B_{1X} = \gamma_H B_{1H}$) and the precession frequency is calculated from the 90°-pulse length (t_p) by $\nu_1 = 1/4t_p$.

14. Once the approximate setting for NMR experiments are known it may be possible to adjust CP power levels and pulse durations on the membrane samples themselves provided that there is enough signal intensity to obtain reasonable spectra within a few scans. This can be the case for sensitive nuclei such as 1H and 31P, or for 15N proteins which are uniformly labeled and reconstituted into well oriented membranes. Beneficial to the signal-to-noise ratio are higher magnetic fields of the spectrometer, better electronics, the peaks are usually sharper for oriented bicelles when compared to mechanically oriented samples, and the cross-polarization efficiency is increased for strong dipolar couplings such as they occur in transmembrane protein domains and immobile sites. Furthermore, much higher signal intensities can be obtained under DNP conditions even though with the suppression of averaging motions at low temperatures the line widths tend to increase [37, 41].

For samples with high water and/or salt content, such as bicelles, the RF efficiencies tend to be attenuated by 10–20% when compared to crystalline samples. In such cases it is
advantageous to adjust the ^1H and ^{15}N pulses and the CP conditions on the sample, whenever possible. Furthermore, the water line (4.7 ppm) can be used to determine the ^1H offset frequencies of amides (which occur at 7–10 ppm depending on the ^1H-^{15}N orientation relative to the magnetic field, that is, the helical tilt angle and the bicelle alignment (cf. Fig. 12 in [66])).

15. The range of nearly constant excitation covers a spectral range of $1/4t_p$, where t_p is the pulse length. Therefore, by adjusting the ^{15}N carrier frequency in this manner positions it close to the chemical shift range of the amide and amine resonances. At the same time by placing the carrier outside the spectral range eventual artifacts at the position of the irradiation that could potentially be confused with spectral resonances are avoided.

16. The SEMA pulse provides a spin lock of the ^1H magnetization along the magic angle, thereby removing ^1H–^1H dipolar interactions. At the same time the ^{15}N power level should be adjusted to satisfy the Hartmann–Hahn matching condition. It allows the magnetization to travel between ^{15}N and surrounding protons but not within the ^1H network thereby increasing the life time of the ^{15}N signal. The first condition is fulfilled by off-resonance ^1H irradiation ($\Delta \nu = B_{1\text{eff}} \times \cos 54.7^\circ$) to direct the vectorial addition of B_1 field and $\Delta \nu$ along the magic angle ($B_1 = B_{1\text{eff}} \times \sin 54.7^\circ = B_{1\text{eff}} \times 0.816$ which also provides the scaling factor for the dipolar interaction). The second condition consists in matching the ^{15}N B_1 field (i.e., the power level) to the $B_{1\text{eff}}$ field of the protons.

Specific PISEMA variants exist for better sensitivity and resolution depending on the application [54, 66, 67]. Furthermore, it should be noted that it can be easier to adjust the correct ^1H and ^{15}N frequencies (see Note 13) when PISEMA of the in-planar and transmembrane region are recorded separately, thereby avoiding artifacts.

17. Generally, it is considered that the spectral quality is ameliorated with higher B_1 fields although we have found, using ^{15}N, ^{13}C-labeled crystals, that above a certain threshold, artifacts tend to appear possibly due to limitations of the probe to take up the power properly in combination with the long duration of the SEMA pulse trains.

18. In real samples different types of protons exist and these interact with each other and with the magnetic field in an anisotropic manner resulting in broad ^1H spectra (e.g., see Fig. 1A in reference [13]). During the SEMA sequence the protons which are in strong dipolar contact with the ^{15}N nuclei (e.g., the amide protons in the case of backbone-labeled polypeptides) are decoupled from the ^1H–^1H interaction network.
optimal 1H center frequency is determined empirically using a reference sample (Subheading “Determination of the Power Level for the Proton B_1^{eff} Field”) which ideally matches as closely as possible the situation of the oriented membrane samples. In practice, crystals of N-terminally protected amino acids and/or oriented bacteriophages are used (see also Note 4).

A precise measurement of the B_1 nutation frequency requires a relatively sharp nutation peak (Fig. 4). This is only the case when B_1^{eff} is close to the magic angle and the dipolar interactions are averaged. This also means that the nutation signal provides a good indicator for the Lee–Goldburg conditions.

If the two nutation frequencies at positive and negative offset ($B_1^{\text{eff}+}$ and $B_1^{\text{eff}-}$, respectively) are different the correction term for the center frequency ($\delta
u_o$) can be calculated from the respective $B_1^{\text{eff}+}$ and $B_1^{\text{eff}-}$ frequencies using the relationship

$$
\delta \nu_o = \frac{(B_1^{\text{eff}+})^2 - (B_1^{\text{eff}-})^2}{4\Delta \nu}.
$$

Note that in this equation the “strength of the B_1^{eff} fields” are represented by the resulting nutation frequency (in Hz). An additional nutation experiment should be used to verify the correct setting, but the iterative approach described in Subheading “Determination of the Power Level for the Proton B_1^{eff} Field” (steps 2 and 3) may become unnecessary.

Fig. 4 (a) Calculation of the effective proton B_1 field (B_1^{eff}) during the SEMA pulse train. Whereas the B_1 field is controlled by the pulse power level the frequency offset $+\Delta \nu$ and $-\Delta \nu$ relative to the center frequency is generated by the pulse synthesizer. The center frequency has to match the resonance frequency of the nuclei. The symmetry for positive and negative offsets ($+\Delta \nu$ and $-\Delta \nu$, respectively) is only given if ν_o, the center frequency of the protons, is well adjusted. Note that here the “strength of the B_1^{eff} field” is indicated by the resulting nutation frequency (in Hz). Typical result of the two-dimensional nutation experiment for the proton channel (Fig. 3b)
3.2.2. Parameter for optimization: Preliminary 1H Center Frequency
Sample: 15N Ammoniumchlorid or humid sample
Experiment: 1H pulse(90°) — acquisition

Aim: Proton-Decoupled 15N Cross-Polarization Solid-State NMR Spectroscopy
Sample: 15N Ammoniumchlorid or 15N-acetyl-amino acid (mono-crystal)
Parameter for optimization: 1H 90° Pulse (Power Level, Duration) 15N- 1H CP Condition

3.2.3. Aim: Determination of the Power Level for the Proton B_1^* Field
Sample: 15N Ammoniumchlorid or 15N-acetyl-amino acid (mono-crystal)
Experiment: 1H nutation CP experiment Figure 3b

Aim: Determination of the Power Level for the Nitrogen B_1 Field
Sample: 15N Ammoniumchlorid or 15N-acetyl-amino acid (mono-crystal)
Experiment: 15N nutation CP experiment Figure 3c

Aim: Assembly into the PISEMA Pulse Sequence and Verification
Sample: 15N-acetyl-amino acid (mono-crystal), (U-15N)-filamentous bacteriophage (magnetically oriented)
Experiment: PISEMA experiment Figure 3a

Fig. 5 Flowchart summarizing the setup protocol for the PISEMA experiment
Acknowledgments

The help and comments by Philippe Bertani on the nutation and PISEMA experiments are gratefully acknowledged. B.B. is most grateful to Gianluigi Veglia and Gopinath Tata from the University of Minnesota NMR center for the in-depth discussions and exchange during his sabbatical stay at the University of Minnesota School of Dentistry that was generously supported by School’s Lasby Visiting Professor Fellowship and the University of Strasbourg. We are grateful for the financial support by the Deutsche Forschungsgemeinschaft (postdoctoral grant to M.M.), the Agence Nationale de la Recherche (projects membraneDNP 12-BSV5-0012, MemPepSyn 14-CE34-0001-01, InMembrane 15-CE11-0017-01, Biosupramol 17-CE18-0033-3 and the LabEx Chemistry of Complex Systems 10-LABX-0026_CSC), the University of Strasbourg, the CNRS, the Région Alsace and the RTRA International Center of Frontier Research in Chemistry, the IRTG Soft Matter Science, the French Foundation for Medical Research (FRM), and the American Foundation for Research on Huntington’s Disease (CHDI). B.B. is grateful to the Institut Universitaire de France for providing additional time to be dedicated to research.

References

Author Queries

<table>
<thead>
<tr>
<th>Query Refs.</th>
<th>Details Required</th>
<th>Author’s response</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU1</td>
<td>Please confirm if the author affiliations are correct.</td>
<td></td>
</tr>
<tr>
<td>AU2</td>
<td>Please check if the Subheading cross references are appropriate.</td>
<td></td>
</tr>
<tr>
<td>AU3</td>
<td>Please check whether the section headings are presented correctly.</td>
<td></td>
</tr>
<tr>
<td>AU4</td>
<td>Subheading level 4 have been added based on the cross reference provided in Subheading 3.1 above. Please check if the inserted Subheadings are correct.</td>
<td></td>
</tr>
<tr>
<td>AU5</td>
<td>Please check whether the sentence “The sample can be concentrated ...” is appropriate.</td>
<td></td>
</tr>
<tr>
<td>AU6</td>
<td>"cf." in notes citations have been changed to "see" as per style. Please check if appropriate.</td>
<td></td>
</tr>
<tr>
<td>AU7</td>
<td>Please check if the inserted missing citations of Tables 2, 3, and 4 are appropriate.</td>
<td></td>
</tr>
<tr>
<td>AU8</td>
<td>Please check and approve the edit in the word “prelabeled”.</td>
<td></td>
</tr>
<tr>
<td>AU9</td>
<td>Please check if the subheading cross reference is appropriate here and in subsequent occurrence.</td>
<td></td>
</tr>
<tr>
<td>AU10</td>
<td>Please provide appropriate subheading number in the step cross references in Note 13.</td>
<td></td>
</tr>
</tbody>
</table>