IBMC - Immunopathologie et chimie thérapeutique

  • Flux RSS
(1 - 20 of 172)

Pages

Export to file
Bookmark
Étiquette
Adamantane-based dendrons for trimerization of the therapeutic P140 peptide.
LAMANNA, Giuseppe, GRILLAUD, Maxime, MACRI, Christophe, CHALOIN, Olivier, MULLER, Sylviane et BIANCO, Alberto, 2014. Adamantane-based dendrons for trimerization of the therapeutic P140 peptide. Biomaterials [en ligne]. 2 juin 2014. Vol. 35, n° 26pp. 7553-61. [Consulté 2 juin 2014]. DOI 10.1016/j.biomaterials.2014.05.017. Consulté de : https://www.sciencedirect.com/science/article/pii/S0142961214005602?via%3Dihub1. journal article. 2. research support, non-u.s. gov't. 3. 2014 Aug. 4. 2014 06 02. 5. . 6. imported. 7. .
Ammonium and guanidinium dendron-carbon nanotubes by amidation and click chemistry and their use for siRNA delivery.
BATTIGELLI, Alessia, WANG, Julie Tzu-Wen, RUSSIER, Julie, DA ROS, Tatiana, KOSTARELOS, Kostas, AL-JAMAL, Khuloud T, PRATO, Maurizio et BIANCO, Alberto, 2013. Ammonium and guanidinium dendron-carbon nanotubes by amidation and click chemistry and their use for siRNA delivery. Small (Weinheim an der Bergstrasse, Germany) [en ligne]. 6 mai 2013. Vol. 9, n° 21pp. 3610-9. [Consulté 6 mai 2013]. DOI 10.1002/smll.201300264. Consulté de : https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.2013002641. journal article. 2. research support, non-u.s. gov't. 3. 2013 Nov 11. 4. 2013 05 06. 5. . 6. imported. 7. .
Anatomical distribution analysis reveals lack of Langerin+ dermal dendritic cells in footpads and tail of C57BL/6 mice.
VOISIN, Benjamin, MAIRHOFER, David Gabriel, CHEN, Suzie, STOITZNER, Patrizia, MUELLER, Christopher George et FLACHER, Vincent, 2014. Anatomical distribution analysis reveals lack of Langerin+ dermal dendritic cells in footpads and tail of C57BL/6 mice. Experimental dermatology. mai 2014. Vol. 23, n° 5pp. 354-6. DOI 10.1111/exd.12373. 1. letter. 2. research support, non-u.s. gov't. 3. 2014 May. 4. . 5. imported.
Asbestos-like pathogenicity of long carbon nanotubes alleviated by chemical functionalization.
ALI-BOUCETTA, Hanene, NUNES, Antonio, SAINZ, Raquel, HERRERO, M Antonia, TIAN, Bowen, PRATO, Maurizio, BIANCO, Alberto et KOSTARELOS, Kostas, 2013. Asbestos-like pathogenicity of long carbon nanotubes alleviated by chemical functionalization. Angewandte Chemie (International ed. in English) [en ligne]. 14 janvier 2013. Vol. 52, n° 8pp. 2274-8. [Consulté 14 janvier 2013]. DOI 10.1002/anie.201207664. Consulté de : https://doi.org/10.1002/anie.2012076641. journal article. 2. research support, non-u.s. gov't. 3. 2013 Feb 18. 4. 2013 01 14. 5. . 6. imported. 7. .
Autophagy in neuroinflammatory diseases.
MULLER, Sylviane, BRUN-SIBILLE, Susana, RENÉ, Frederique, DE SEZE, Jerome, LOEFFLER, Jean-Philippe et JELTSCH-DAVID, Helene, 2017. Autophagy in neuroinflammatory diseases. Autoimmunity reviews [en ligne]. 29 mai 2017. Vol. 16, n° 8pp. 856-874. [Consulté 29 mai 2017]. DOI 10.1016/j.autrev.2017.05.015. Consulté de : http://www.sciencedirect.com/science/article/pii/S1568997217301398?via%3Dihub1. journal article. 2. review. 3. 2017 Aug. 4. 2017 05 29. 5. . 6. imported. 7. .
Avian erythrocytes have functional mitochondria, opening novel perspectives for birds as animal models in the study of ageing
STIER, Antoine, BIZE, Pierre, SCHULL, Quentin, ZOLL, Joffrey, SINGH, François, GENY, Bernard, GROS, Frédéric, ROYER, Cathy, MASSEMIN, Sylvie et CRISCUOLO, François, 2013. Avian erythrocytes have functional mitochondria, opening novel perspectives for birds as animal models in the study of ageing. Frontiers in Zoology. 2013. Vol. 10, n° 1pp. 33. DOI 10.1186/1742-9994-10-33.
B cells differentiate in human thymus and express AIRE
GIES, Vincent, GUFFROY, Aurélien, DANION, François, BILLAUD, Philippe, KEIME, Céline, FAUNY, Jean-Daniel, SUSINI, Sandrine, SOLEY, Anne, MARTIN, Thierry, PASQUALI, Jean-Louis, GROS, Frédéric, ANDRÉ-SCHMUTZ, Isabelle, SOULAS-SPRAUEL, Pauline et KORGANOW, Anne-Sophie, 2017. B cells differentiate in human thymus and express AIRE. Journal of Allergy and Clinical Immunology. mars 2017. Vol. 139, n° 3pp. 1049-1052.e12. DOI 10.1016/j.jaci.2016.09.044.
B cells differentiate in human thymus and express AIRE
GIES, Vincent, GUFFROY, Aurélien, DANION, F., BILLAUD, P., KEIME, C., FAUNY, Jean-daniel D., SUSINI, S., SOLEY, A., MARTIN, Ophelie, PASQUALI, Jean-louis L., GROS, Frédéric, ANDRE-SCHMUTZ, I., SOULAS-SPRAUEL, Pauline et KORGANOW, Anne-sophie S., 2017. B cells differentiate in human thymus and express AIRE. J Allergy Clin Immunol [en ligne]. 2017. Vol. 139, n° 3pp. 1049-1052. [Consultésans date]. DOI 10.1016/j.jaci.2016.09.044. Consulté de : http://www.ncbi.nlm.nih.gov/pubmed/278640261. .
Biocompatibility and biodegradability of 2D materials: graphene and beyond
MARTÍN, Cristina, KOSTARELOS, Kostas, PRATO, Maurizio et BIANCO, Alberto, sans date. Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chemical Communications. sans date. Vol. 55, n° 39pp. 5540-5546. DOI 10.1039/C9CC01205B. 1. .
A Biodegradable Multifunctional Graphene Oxide Platform for Targeted Cancer Therapy
MARTIN-JIMENEZ, Cristina, RUIZ-ESTRADA, Amalia, KESHAVAN, Sandeep, REINA, Giacomo, MURERA, Diane, NISHINA, Yuta, FADEEL, Bengt et BIANCO, Alberto, sans date. A Biodegradable Multifunctional Graphene Oxide Platform for Targeted Cancer Therapy. Advanced Functional Materials. sans date. Vol. 29, n° 39pp. 1901761. DOI 10.1002/adfm.201901761. 1. .
Biodistribution of x-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core
ATTIA, Mohamed Fathy F., ANTON, Nicolas, CHIPER, Carmen-Manuela, AKASOV, Roman, ANTON, Halina, MESSADDEQ, Nadia, FOURNEL, Sylvie, KLYMCHENKO, Andrey S., MELY, Yves et VANDAMME, Thierry F., 2014. Biodistribution of x-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core. ACS Nano [en ligne]. 10 octobre 2014. Vol. 8, n° 10pp. 10537-10550. [Consultésans date]. DOI 10.1021/nn503973z. Consulté de : http://pubs.acs.org/doi/10.1021/nn503973z1. .
Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead.
KURAPATI, Rajendra, KOSTARELOS, Kostas, PRATO, Maurizio et BIANCO, Alberto, 2017. Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead. Advanced materials (Deerfield Beach, Fla.) [en ligne]. 20 janvier 2017. Vol. 29, n° 4. [Consultésans date]. DOI 10.1002/adma.201606523. Consulté de : https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.2016065231. journal article. 2. published erratum. 3. 2017 Jan. 4. . 5. imported. 6. .
Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead.
KURAPATI, Rajendra, KOSTARELOS, Kostas, PRATO, Maurizio et BIANCO, Alberto, 2016. Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead. Advanced materials (Deerfield Beach, Fla.) [en ligne]. 23 avril 2016. Vol. 28, n° 29pp. 6052-74. [Consulté 23 avril 2016]. DOI 10.1002/adma.201506306. Consulté de : https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.2015063061. journal article. 2. 2016 Aug. 3. 2016 04 23. 4. . 5. imported. 6. .
Carabin deficiency in B cells increases BCR-TLR9 costimulation-induced autoimmunity
SCHICKEL, Jean-Nicolas, PASQUALI, Jean-Louis, SOLEY, Anne, KNAPP, Anne-Marie, DECOSSAS, Marion, KERN, Aurélie, FAUNY, Jean-Daniel, MARCELLIN, Luc, KORGANOW, Anne-sophie, MARTIN, Thierry et SOULAS-SPRAUEL, Pauline, 2012. Carabin deficiency in B cells increases BCR-TLR9 costimulation-induced autoimmunity. EMBO Molecular Medicine [en ligne]. 29 octobre 2012. Vol. 4, n° 12pp. 1261-1275. [Consultésans date]. DOI 10.1002/emmm.201201595. Consulté de : http://embomolmed.embopress.org/content/4/12/12611. .
Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation.
HIRATA, Eri, MIYAKO, Eijiro, HANAGATA, Nobutaka, USHIJIMA, Natsumi, SAKAGUCHI, Norihito, RUSSIER, Julie, YUDASAKA, Masako, IIJIMA, Sumio, BIANCO, Alberto et YOKOYAMA, Atsuro, 2016. Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation. Nanoscale [en ligne]. 28 juin 2016. Vol. 8, n° 30pp. 14514-22. [Consulté 14 juillet 2016]. DOI 10.1039/c6nr02756c. Consulté de : http://pubs.rsc.org/en/Content/ArticleLanding/2016/NR/C6NR02756C#!divAbstract1. journal article. 2. 2016 Aug 14. 3. 2016 07 14. 4. . 5. imported. 6. .
Carbon nanomaterials as new tools for immunotherapeutic applications
BATTIGELLI, Alessia, MÉNARD-MOYON, Cécilia et BIANCO, Alberto, sans date. Carbon nanomaterials as new tools for immunotherapeutic applications. Journal of Materials Chemistry B [en ligne]. sans date. Vol. 2, n° 37pp. 6144-6156. [Consultésans date]. DOI 10.1039/C4TB00563E. Consulté de : http://pubs.rsc.org/en/content/articlelanding/2014/tb/c4tb00563e#!divAbstract1. .
Carbon nanomaterials combined with metal nanoparticles for theranostic applications.
MODUGNO, Gloria, MÉNARD-MOYON, Cécilia, PRATO, Maurizio et BIANCO, Alberto, 2014. Carbon nanomaterials combined with metal nanoparticles for theranostic applications. British journal of pharmacology [en ligne]. 17 octobre 2014. Vol. 172, n° 4pp. 975-91. [Consulté 12 janvier 2015]. DOI 10.1111/bph.12984. Consulté de : https://doi.org/10.1111/bph.129841. journal article. 2. research support, non-u.s. gov't. 3. review. 4. 2015 Feb. 5. 2015 01 12. 6. . 7. imported. 8. .
Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway
ELGRABLI, Dan, DACHRAOUI, Walid, MÉNARD-MOYON, Cécilia, LIU, Xiao Jie ., BEGIN, Dominique, BÉGIN-COLIN, Sylvie, BIANCO, Alberto, GAZEAU, Florence et ALLOYEAU, Damien, 2015. Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway. ACS Nano [en ligne]. 2 septembre 2015. Vol. 9, n° 10pp. 10113-10124. [Consultésans date]. DOI 10.1021/acsnano.5b03708. Consulté de : http://dx.doi.org/10.1021/acsnano.5b037081. .
Carbon nanotube scaffolds instruct human dendritic cells: modulating immune responses by contacts at the nanoscale.
ALDINUCCI, Alessandra, TURCO, Antonio, BIAGIOLI, Tiziana, TOMA, Francesca Maria, BANI, Daniele, GUASTI, Daniele, MANUELLI, Cinzia, RIZZETTO, Lisa, CAVALIERI, Duccio, MASSACESI, Luca, MELLO, Tommaso, SCAINI, Denis, BIANCO, Alberto, BALLERINI, Laura, PRATO, Maurizio et BALLERINI, Clara, 2013. Carbon nanotube scaffolds instruct human dendritic cells: modulating immune responses by contacts at the nanoscale. Nano letters [en ligne]. 13 novembre 2013. Vol. 13, n° 12pp. 6098-105. [Consulté 15 novembre 2013]. DOI 10.1021/nl403396e. Consulté de : https://pubs.acs.org/doi/10.1021/nl403396e1. journal article. 2. research support, non-u.s. gov't. 3. 2013. 4. 2013 11 15. 5. . 6. imported. 7. .
Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation.
HIRATA, Eri, MÉNARD-MOYON, Cécilia, VENTURELLI, Enrica, TAKITA, Hiroko, WATARI, Fumio, BIANCO, Alberto et YOKOYAMA, Atsuro, 2013. Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation. Nanotechnology [en ligne]. 27 septembre 2013. Vol. 24, n° 43pp. 435101. [Consulté 27 septembre 2013]. DOI 10.1088/0957-4484/24/43/435101. Consulté de : http://iopscience.iop.org/article/10.1088/0957-4484/24/43/435101/pdf1. journal article. 2. research support, u.s. gov't, non-p.h.s. 3. 2013 Nov 01. 4. 2013 09 27. 5. . 6. imported. 7. .

Pages

Islandora displays